Faster Isogeny-Based Compressed Key Agreement

Gustavo H. M. Zanon, Marcos A. Simplicio Jr, Geovandro C. C. F. Pereira, Javad Doliskani, and Paulo S. L. M. Barreto.

REVIEW: SIDH AND COMPRESSED KEYS

Isogeny-based Crypto

SIDH: proposed replacement for DH-based elliptic curves in a post-quantum world.

Smallest post-quantum public keys (< 200 bytes)
 boosted by key compression techniques
 applications with low bandwidth requirements

Downside:

□ ≈2 order of magnitude slower than FourQ-based DH or other fast post-quantum KEM schemes (NewHope/NTRU).

SIDH Parameter Setting

p = 2^m ⋅ 3ⁿ - 1 for post-quantum sec. level ≈ 128 bits
 □ Previous: 751-bit prime for m = 372, n = 239
 □ [2018] Adj et al. suggest ≈ 448-bit primes are enough

SIDH Parameter Setting

- p = 2^m ⋅ 3ⁿ 1 for post-quantum sec. level ≈ 128 bits
 □ Previous: 751-bit prime for m = 372, n = 239
 □ [2018] Adj et al. suggest ≈ 448-bit primes are enough
- E_0/\mathbb{F}_{p^2} : $By^2 = x^3 + Ax^2 + x$ a supersingular Montgomery curve of order $(p + 1)^2 = 2^{2m}3^{2n}$
 - $\Box \langle P_A, Q_A \rangle = E(\mathbb{F}_{p^2})[2^m], \ \langle P_B, Q_B \rangle = E(\mathbb{F}_{p^2})[3^n]$

SIDH Parameter Setting

- p = 2^m ⋅ 3ⁿ 1 for post-quantum sec. level ≈ 128 bits
 □ Previous: 751-bit prime for m = 372, n = 239
 □ [2018] Adj et al. suggest ≈ 448-bit primes are enough
- E_0/\mathbb{F}_{p^2} : $By^2 = x^3 + Ax^2 + x$ a supersingular Montgomery curve of order $(p + 1)^2 = 2^{2m}3^{2n}$
 - $\Box \langle P_A, Q_A \rangle = E(\mathbb{F}_{p^2})[2^m], \ \langle P_B, Q_B \rangle = E(\mathbb{F}_{p^2})[3^n]$
- User private key: $s \in_R \mathbb{Z}/\ell^e \mathbb{Z}$ for $\ell \in \{2,3\}, e \in \{m, n\}$
- User public key: curve $E_{A,B} = \phi(E_0)$ and points $\phi(P)$, $\phi(Q) \in E_{A,B}$.

• Goal: transmit public key $\{E_{A,B}, \phi(P), \phi(Q)\}$

Bob

[2011] Jao et al.'s public key representation:

 $\boldsymbol{\phi}(\boldsymbol{P}), \boldsymbol{\phi}(\boldsymbol{Q}) \in \mathbf{E}_{\mathrm{A},\mathrm{B}}$

8

• [2016] Azarderakhsh et al.'s key compression:

isomorphic curve

[2016] Azarderakhsh et al.'s key compression:

[2016] Azarderakhsh et al.'s key compression:

 $E_{A,B}/\mathbb{F}_{p^2}: By^2 = x^3 + Ax^2 + x$ $\phi(P), \phi(Q) \in E_{A,B}$ T

There is a canonical basis $\{R_1, R_2\}$ such that

$$\langle R_1, R_2 \rangle = E_{A,B}[3^n]$$

Idea: express

$$\phi(P) = a_1 R_1 + a_2 R_2$$
$$\phi(Q) = b_1 R_1 + b_2 R_2$$

[2016] Azarderakhsh et al.'s key compression:

There is a canonical basis $\{R_1, R_2\}$ such that

 $\langle R_1, R_2 \rangle = E_{A,B}[3^n]$ Linear algebra tasks - Build a basis

Idea: express

 $\phi(P), \phi(Q) \in E_{A,B}$

$$\phi(P) = a_1 R_1 + a_2 R_2$$

 $\phi(Q) = b_1 R_1 + b_2 R_2$ - Internal product: pairing
 $\phi(Q) = b_1 R_1 + b_2 R_2$ - Coeff. extraction: DLOG

[2016] Azarderakhsh et al.'s key compression:

[2016] Azarderakhsh et al.'s key compression:

 $E_{A,B}/F_{p^2}:By^2 = x^3 + Ax^2 + x$ $\phi(P), \phi(Q) \in E_{A,B}$

Compression (2/3):

- prepare DLOG instances
- Cost: 5 pairings

 $\phi(P) = a_1 R_1 + a_2 R_2$ $\phi(Q) = b_1 R_1 + b_2 R_2$ $g = e_{3^n}(R_1, R_2)$ $g_0 = e_{3^n}(R_1, \phi(P))$ $g_1 = e_{3^n}(R_2, \phi(P))$ $g_2 = e_{3^n}(R_1, \phi(Q))$ $g_3 = e_{3^n}(R_2, \phi(Q))$

[2016] Azarderakhsh et al.'s key compression:

(Pohlig-Hellman)

 $b_2 = \log_g g_2$

22

• [2016] Azarderakhsh et al.'s key compression:

 $\boldsymbol{\phi}(\boldsymbol{P}), \boldsymbol{\phi}(\boldsymbol{Q}) \in E_{A,B}$

[2016] Azarderakhsh et al.'s key compression:

[2016] Azarderakhsh et al.'s key compression:

 $E_{A,B}/F_{p^2}: By^2 = x^3 + Ax^2 + x$ $\phi(P), \phi(Q) \in E_{A,B}$

Decompression

- Compute $\langle R_1, R_2 \rangle = E_{A',B'}[3^n]$
- Recover points:

 $\boldsymbol{\phi}(\boldsymbol{P}) \leftarrow \boldsymbol{a_1} \boldsymbol{R_1} + \boldsymbol{a_2} \boldsymbol{R_2}$

 $\boldsymbol{\phi}(\boldsymbol{Q}) \leftarrow \boldsymbol{b_1} R_1 + \boldsymbol{b_2} R_2$

• Cost: 4 scalar muls.

[2016] Azarderakhsh et al.'s key compression:

 $j(E_{A,B}) \in \mathbb{F}_{p^2}: 2 \log p \text{ bits}$ $a_1, a_2, b_1, b_2 \in \mathbb{Z}_{3^n}: 2 \log p \text{ bits}$ $\bigvee S$ $A, B \in F_{p^2}: 4 \log p \text{ bits}$ $x(\phi(P)), x(\phi(Q)): 4 \log p \text{ bits}$

Public key size: 4 log p bits

- Keys shrunk by 2× ☺
- Compression time > 10× KEX ⊗

[2017] Costello et al. key compression:

 $\boldsymbol{\phi}(\boldsymbol{P}), \boldsymbol{\phi}(\boldsymbol{Q}) \in E$

Further compression

• Bob recovers $\phi(P), \phi(Q)$ to compute the kernel

 $K = \langle \phi(P) + s_B \phi(Q) \rangle$

• [2017] Costello et al. key compression:

 $E/F_{p^2}: By^2 = x^3 + Ax^2 + x$ $\phi(P), \phi(Q) \in E$

Further compression

• After recovering $\phi(P), \phi(Q)$, Bob computes the kernel

 $K = \langle \phi(P) + s_B \phi(Q) \rangle$

$$= \langle a_1 + s_B b_1 \rangle R_1 + (a_2 + s_B b_1) R_2 \rangle$$

• [2017] Costello et al. key compression:

 $E/F_{p^2}: By^2 = x^3 + Ax^2 + x$ $\phi(P), \phi(Q) \in E$

Further compression

• After recovering $\phi(P), \phi(Q)$, Bob computes the kernel

 $K = \langle \phi(P) + s_B \phi(Q) \rangle$

$$= \langle a_1 + s_B b_1 \rangle R_1 + (a_2 + s_B b_1) R_2 \rangle$$

• wlog. assume a_1 is invertible $mod \ 3^n$ (otherwise b_1 is), then $a_1^{-1}K = \langle (1 + s_B b_1 a_1^{-1})R_1 + (a_2 a_1^{-1} + s_B b_2 a_1^{-1})R_2 \rangle = K$

[2017] Costello et al.'s key compression:

 $E/F_{p^2}: By^2 = x^3 + Ax^2 + x$ $\phi(P), \phi(Q) \in E$

3 elements in \mathbb{Z}_{3^n} are enough:

 $\alpha = b_1 a_1^{-1} \in \mathbb{Z}_{3^n}$ $\beta = a_2 a_1^{-1} \in \mathbb{Z}_{3^n}$ $\gamma = b_2 a_1^{-1} \in \mathbb{Z}_{3^n}$

Plus 1 bit about invertibility of a_1 or b_1

• 2017, Costello et al.'s key compression:

 $E/F_{p^2}: By^2 = x^3 + Ax^2 + x$ $\phi(P), \phi(Q) \in E$

Optimizations on steps 1, 2 and 3 of compression and on decompression. To compress $\phi(P), \phi(Q)$:

- generate basis $\{R_1, R_2\}$
- compute 5 pairings
 - NB: cost of 5-way Monty Inv.: 30 muls (report)
- compute 4 DLOGs, i.e., {*a*₁, *a*₂, *b*₁, *b*₂}
- compute α , β , γ from the quadruple above

• 2017, Costello et al.'s key compression:

 $E/F_{p^2}: By^2 = x^3 + Ax^2 + x$ $\phi(P), \phi(Q) \in E$

Public key size: 3.5 log p bits

• Ex.: |pk| = 328 bytes for |p| = 751 bits

Compression time $\approx 1 \times$ KEX and decompression $\approx 0.4 \times$ KEX

Is the current (de)compression performance acceptable?

- Is the current (de)compression performance acceptable?
- Current state of classical elliptic curves:
 - □ CHES'2017*: speed records for ECDH on embedded devices using curve FourQ.
 - Compression = free (similar to original SIDH, send one coordinate of the point)
 - Decompression = 0.04x key agreement

- Is the current (de)compression performance acceptable?
- Current state of classical elliptic curves:
 - □ CHES'2017*: speed records for ECDH on embedded devices using curve FourQ.
 - Compression = free (similar to original SIDH, send one coordinate of the point)
 - Decompression = 0.04x key agreement
- This work's goal is reduce this gap

Detect and improve the remaining SIDH key compression bottlenecks.

Faster SIDH Public Key Compression

Most costly operations:

- I. Computing a basis $\{R_1, R_2\}$
- II. Computing 5 pairings
- III. Computing 4 discrete logs

Faster SIDH Public Key Compression

Most costly operations:

- I. Computing a basis $\{R_1, R_2\}$
- II. Computing 5 pairings
- III. Computing 4 discrete logs
- New algorithms to address the above bottlenecks.

Faster SIDH Public Key Compression

Most costly operations:

- 1. Computing a basis $\{R_1, R_2\}$
- II. Computing 5 pairings
- III. Computing 4 discrete logs
- New algorithms to address the above bottlenecks.
 - Reverse basis decomposition
 - > Pairings reduced to 4 instead of 5 for both sides.
 - > 2 multiplications by large cofactor 3^n saved in the binary case.
 - > Allows for faster discrete logs.: precompute (single, shared) table offline.

Previous works express the public key as

 $\phi(P) = a_1 R_1 + a_2 R_2$ $\phi(Q) = b_1 R_1 + b_2 R_2$

• or in matrix notation

$$\begin{bmatrix} \phi(P) \\ \phi(Q) \end{bmatrix} = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \begin{bmatrix} R_1 \\ R_2 \end{bmatrix}$$

Previous works express the public key as

 $\phi(P) = a_1 R_1 + a_2 R_2$ $\phi(Q) = b_1 R_1 + b_2 R_2$

or in matrix notation

$$\begin{bmatrix} \phi(P) \\ \phi(Q) \end{bmatrix} = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \begin{bmatrix} R_1 \\ R_2 \end{bmatrix}$$

Since $\{\phi(P), \phi(Q)\}$ also form a basis, matrix *M* is invertible and changing roles:

$$\begin{bmatrix} R_1 \\ R_2 \end{bmatrix} = \begin{bmatrix} c_1 & c_2 \\ d_1 & d_2 \end{bmatrix} \begin{bmatrix} \phi(P) \\ \phi(Q) \end{bmatrix}$$

• Idea: revert the process by starting from M^{-1} and recovering M from it?

• Express $\{R_1, R_2\}$ in basis $\{\phi(P), \phi(Q)\}$

 $R_1 = c_1 \phi(P) + c_2 \phi(Q)$ $R_2 = d_1 \phi(P) + d_2 \phi(Q)$

• Express $\{R_1, R_2\}$ in basis $\{\phi(P), \phi(Q)\}$

 $R_1 = c_1 \phi(P) + c_2 \phi(Q)$ $R_2 = d_1 \phi(P) + d_2 \phi(Q)$ $e(\phi(P), R_1) =$

• Express $\{R_1, R_2\}$ in basis $\{\phi(P), \phi(Q)\}$

 $R_1 = c_1 \phi(P) + c_2 \phi(Q)$ $R_2 = d_1 \phi(P) + d_2 \phi(Q)$

 $e(\phi(P), R_1) = e(\phi(P), c_1\phi(P) + c_2\phi(Q))$ $= e(\phi(P), c_1\phi(P)) \cdot e(\phi(P), c_2\phi(Q))$ $= e(\phi(P), \phi(P))^{c_1} \cdot e(\phi(P), \phi(Q))^{c_2}$

 $= e(\phi(P), \phi(Q))^{c_2}$
• Express $\{R_1, R_2\}$ in basis $\{\phi(P), \phi(Q)\}$

 $R_{1} = c_{1}\phi(P) + c_{2}\phi(Q)$ $R_{2} = d_{1}\phi(P) + d_{2}\phi(Q)$ $e(\phi(P), R_{1}) = e(\phi(P), c_{1}\phi(P) + c_{2}\phi(Q))$ $= e(\phi(P), c_{1}\phi(P)) \cdot e(\phi(P), c_{2}\phi(Q))$ $= e(\phi(P), \phi(P))^{c_{1}} \cdot e(\phi(P), \phi(Q))^{c_{2}}$ $= e(\phi(P), \phi(Q))^{c_{2}}$

 $h = e(\phi(P), \phi(Q))$ $= e(P, \widehat{\phi} \circ \phi(Q))$

• Express $\{R_1, R_2\}$ in basis $\{\phi(P), \phi(Q)\}$

 $R_{1} = c_{1}\phi(P) + c_{2}\phi(Q)$ $R_{2} = d_{1}\phi(P) + d_{2}\phi(Q)$ $e(\phi(P), R_{1}) = e(\phi(P), c_{1}\phi(P) + c_{2}\phi(Q))$ $= e(\phi(P), c_{1}\phi(P)) \cdot e(\phi(P), c_{2}\phi(Q))$ $= e(\phi(P), \phi(P))^{c_{1}} \cdot e(\phi(P), \phi(Q))^{c_{2}}$ $= e(\phi(P), \phi(Q))^{c_{2}}$

 $h = e(\phi(P), \phi(Q))$ $= e(P, \widehat{\phi} \circ \phi(Q))$ $= e(P, [deg \phi]Q)$

• Express $\{R_1, R_2\}$ in basis $\{\phi(P), \phi(Q)\}$

 $R_{1} = c_{1}\phi(P) + c_{2}\phi(Q)$ $R_{2} = d_{1}\phi(P) + d_{2}\phi(Q)$ $e(\phi(P), R_{1}) = e(\phi(P), c_{1}\phi(P) + c_{2}\phi(Q))$ $= e(\phi(P), c_{1}\phi(P)) \cdot e(\phi(P), c_{2}\phi(Q))$ $= e(\phi(P), \phi(P))^{c_{1}} \cdot e(\phi(P), \phi(Q))^{c_{2}}$ $= e(\phi(P), \phi(Q))^{c_{2}}$

 $h = e(\phi(P), \phi(Q))$ $= e(P, \widehat{\phi} \circ \phi(Q))$ $= e(P, [deg \phi]Q)$ $= e(P, Q)^{deg \phi}$

• Express $\{R_1, R_2\}$ in basis $\{\phi(P), \phi(Q)\}$

 $R_{1} = c_{1}\phi(P) + c_{2}\phi(Q)$ $R_{2} = d_{1}\phi(P) + d_{2}\phi(Q)$ $e(\phi(P), R_{1}) = e(\phi(P), c_{1}\phi(P) + c_{2}\phi(Q))$ $= e(\phi(P), c_{1}\phi(P)) \cdot e(\phi(P), c_{2}\phi(Q))$ $= e(\phi(P), \phi(P))^{c_{1}} \cdot e(\phi(P), \phi(Q))^{c_{2}}$ $= e(\phi(P), \phi(Q))^{c_{2}}$ h

 $h = e(\phi(P), \phi(Q))$ $= e(P, \widehat{\phi} \circ \phi(Q))$

$$= e(P, [deg \phi]Q)$$
$$= e(P, Q)^{deg \phi}$$

h only depends on public information $(P, Q, \deg \phi)$, thus can be precomputed once and for all and made available in the public parameters.

• Express $\{R_1, R_2\}$ in basis $\{\phi(P), \phi(Q)\}$

 $R_1 = c_1 \phi(P) + c_2 \phi(Q)$ $R_2 = d_1 \phi(P) + d_2 \phi(Q)$

 $h = e(\phi(P), \phi(Q)) \longrightarrow$ fixed in the public params

$h_0 = e(\phi(P), R_1)$	
$h_1 = e(\phi(P), R_2)$	4 pairings computed
$h_2 = e(\phi(Q), R_1)$	at runtime
$h_3 = e(\phi(Q), R_2)$	12 muls)

• Express $\{R_1, R_2\}$ in basis $\{\phi(P), \phi(Q)\}$

 $R_1 = c_1 \phi(P) + c_2 \phi(Q)$ $R_2 = d_1 \phi(P) + d_2 \phi(Q)$

 $h = e(\phi(P), \phi(Q)) \longrightarrow$ fixed in the public params

$$\begin{array}{c} h_0 = e(\phi(P), R_1) \\ h_1 = e(\phi(P), R_2) \\ h_2 = e(\phi(Q), R_1) \\ h_3 = e(\phi(Q), R_2) \end{array} \right| \begin{array}{c} 4 \text{ pairings computed} \\ at \text{ runtime} \\ (\text{NB: cost of 4-way Monty inv.:} \\ 12 \text{ muls}) \end{array}$$

 $c_1, c_2, d_1, d_2 = \log_h\{h_0, h_1, h_2, h_3\}$ } recover M^{-1}

• Reverting to $M = (M^{-1})^{-1}$, i.e., recover a_1, a_2, b_1, b_2 :

$$\begin{bmatrix} \boldsymbol{a_1} & \boldsymbol{a_2} \\ \boldsymbol{b_1} & \boldsymbol{b_2} \end{bmatrix} = \frac{1}{\Delta} \begin{bmatrix} d_2 & -d_1 \\ -c_2 & c_1 \end{bmatrix}$$

where $\Delta = \det M^{-1} = c_1 d_2 - c_2 d_1 \pmod{\ell^e}$

• Reverting to $M = (M^{-1})^{-1}$, i.e., recover a_1, a_2, b_1, b_2 :

$$\begin{bmatrix} \boldsymbol{a_1} & \boldsymbol{a_2} \\ \boldsymbol{b_1} & \boldsymbol{b_2} \end{bmatrix} = \frac{1}{\Delta} \begin{bmatrix} d_2 & -d_1 \\ -c_2 & c_1 \end{bmatrix}$$

where $\Delta = \det M^{-1} = c_1 d_2 - c_2 d_1 \pmod{\ell^e}$

• But Alice only sends (assuming a_1 invertible):

 $\alpha = b_1 a_1^{-1}$ $\beta = a_2 a_1^{-1}$ $\gamma = b_2 a_1^{-1}$

• Reverting to $M = (M^{-1})^{-1}$, i.e., recover a_1, a_2, b_1, b_2 :

$$\begin{bmatrix} \boldsymbol{a_1} & \boldsymbol{a_2} \\ \boldsymbol{b_1} & \boldsymbol{b_2} \end{bmatrix} = \frac{1}{\Delta} \begin{bmatrix} d_2 & -d_1 \\ -c_2 & c_1 \end{bmatrix}$$

where $\Delta = \det M^{-1} = c_1 d_2 - c_2 d_1 \pmod{\ell^e}$

• But Alice only sends (assuming a_1 invertible):

$$\alpha = -\frac{c_2}{\Delta} \cdot \frac{\Delta}{d_2} = -\frac{c_2}{d_2}$$
$$\beta = -\frac{d_1}{\Delta} \cdot \frac{\Delta}{d_2} = -\frac{d_1}{d_2}$$
$$\gamma = \frac{c_1}{\Delta} \cdot \frac{\Delta}{d_2} = \frac{c_1}{d_2}$$

1 inv. + 3 muls. (mod ℓ^e) Same operations as before

Swapped (reduced) Tate pairing arguments

 $h_0 = e(\phi(P), R_1)$ $h_1 = e(\phi(P), R_2)$ $h_2 = e(\phi(Q), R_1)$ $h_3 = e(\phi(Q), R_2)$

- Swapped (reduced) Tate pairing arguments
- Second argument do not need to be cofactor reduced

 $h_0 = e(\phi(P), R'_1)$ $h_1 = e(\phi(P), R'_2)$ $h_2 = e(\phi(Q), R'_1)$ $h_3 = e(\phi(Q), R'_2)$ such that $[h]R'_i = R_i$

- Swapped (reduced) Tate pairing arguments
- Second argument do not need to be cofactor reduced

 $h_{0} = e(\phi(P), R'_{1})$ $h_{1} = e(\phi(P), R'_{2})$ $h_{2} = e(\phi(Q), R'_{1})$ $h_{3} = e(\phi(Q), R'_{2})$ such that $[h]R'_{i} = R_{i}$ $R_{1}' = c_{1}'\phi(P) + c_{2}'\phi(Q)$ $R_{2}' = d_{1}'\phi(P) + d_{2}'\phi(Q)$ S.t. $[h]c'_{i} = c_{i}, [h]d'_{i} = d_{i}$ DLOGs are up to cofactor h^{-1} Simply post-multiply by h in $\mathbb{Z}_{\ell^{e}}$

- Swapped (reduced) Tate pairing arguments
- Second argument do not need to be cofactor reduced

 $h_{0} = e(\phi(P), R'_{1})$ $h_{1} = e(\phi(P), R'_{2})$ $h_{2} = e(\phi(Q), R'_{1})$ $h_{3} = e(\phi(Q), R'_{2})$ such that $[h]R'_{i} = R_{i}$ $R_{1}' = c_{1}'\phi(P) + c_{2}'\phi(Q)$ $R_{2}' = d_{1}'\phi(P) + d_{2}'\phi(Q)$ S.t. $[h]c'_{i} = c_{i}, [h]d'_{i} = d_{i}$ DLOGs are up to cofactor h^{-1} Simply post-multiply by h in $\mathbb{Z}_{\ell^{e}}$

Two scalar muls. by 3ⁿ saved in the binary torsion using Entangled Basis.

SIDH Public Key Compression

- Most costly operations:
 - 1. Computing a basis $\{R_1, R_2\}$
 - II. Computing 5 pairings
 - III. Computing 4 discrete logs
- New algorithms to address the above bottlenecks.
 - 1. Entangled basis for the (Alice) binary 2^m -torsion

Idea: generate a candidate basis $\{R_1, R_2\}$ by "subverting Elligator 2" formulas

"Entangled" basis generation

Elligator 2 in a nutshell:

 \Box Montgomery curve: E/\mathbb{F}_{p^2} : $By^2 = x^3 + Ax^2 + x$

- \Box Let $u \in \mathbb{F}_{p^2}$ be a non-square.
- \Box Define $v \coloneqq 1/(1 + ur^2)$ where $r \in \mathbb{F}_{p^2}$.
- \Box [Thm. Bernstein et al.] If u is a non-square, then exactly one of

$$x = -Av$$

or

$$x = Av - A$$

is the abscissa of a point on E.

"Entangled" basis generation

- Recall: to build a basis for $E[2^m]$ we need two full order L.I. points
- Getting points of order 2^m on Montgomery curves is cheaper using the 2descent:
 - \Box A point (*x*, *y*) is not in the image of [2]*E* iff *x* is a non-square.
- Search only for non-square abscissas.

"Entangled" basis generation

- The entangled basis for $E[2^m]$:
 - \Box Montgomery curve: E/\mathbb{F}_{p^2} : $By^2 = x^3 + Ax^2 + x$
 - $\Box \text{ Let } u \in \mathbb{F}_{p^2} \text{ be a product of } u = u_0^2 \text{ for } u_0 \in \mathbb{F}_{p^2} \setminus \mathbb{F}_p.$
 - □ Define 2 tables T_s , T_n of pairs $(\mathbf{r}, \mathbf{v} \coloneqq \frac{1}{1+ur^2})$ that contain only \mathbf{v} squares and non-squares, respectively, and $\mathbf{r} \in \mathbb{F}_p$.
 - □ If *A* is square we pick candidates *v* from T_n such that x = -Av is non-square and pick *v* from T_s otherwise.
 - Theorem: choosing the parameters as above, the points whose abscissas are

$$x = -Av$$
 and $x = Av - A$

are either both not on E or both on E, of order multiple of 2^m and linear independent.

Faster Basis Generation

• Entangled Basis $E[2^m] = \langle [3^n]S_1, [3^n]S_2 \rangle$

□ Find one basis point and the other is for free!

- \Box Two cofactor multiplications by 3^n saved on compression!
 - Recall Bob can compute $e_{2^n}(\phi(*), \mathbf{R'_i})$ and still compress his key
- □ No L.I. test required!
 - Previous works remove cofactors 3^n and multiply both candidate points by 2^{m-1} .
- Theoretical estimates and practical experiments show a 15x (!) speedup

SIDH Public Key Compression

Most costly operations:

- 1. Computing a basis $\{R_1, R_2\}$
- II. Computing 5 pairings
- III. Computing 4 discrete logs
- New algorithms to address the three above bottlenecks.
 - In addition to the reduction in number of pairings we investigated the plain Tate pairing over Weierstrass form with Jacobian coordinates and notice a faster pairing computation than Costello et al.'s version based on Montgomery-like formulas.
 - No need to store numerators and denominators separately due to (partial) denominator elimination.
 - Improvement of about 28% for binary and 22% for ternary pairings.

SIDH Public Key Compression

Most costly operations:

- 1. Computing a basis $\{R_1, R_2\}$
- II. Computing 5 pairings
- III. Computing 4 discrete logs
- New algorithms to address the three above bottlenecks.
 - III. An optimal strategy for Pohlig-Hellman
 - > Inspired by Shoup's RDL method
 - > Adopts Jao-De Feo-Plût's isogeny computation to obtain optimal strategy
 - > Attain O(elge) complexity which was informally conjectured by Shoup
 - Combination is non-trivial (more improvements for DL than are possible for isogeny computation)

 $c \in \mu_{\ell}^{e}$ $c = g^{d_0 + d_1 \ell + \dots + d_{e-1} \ell^{e-1}}$ $g = e_{\ell}^{e} (P, Q)^{deg\phi}$ c

 $c \in \mu_{\ell}e$ $c = g^{d_0 + d_1\ell + \dots + d_{e-1}\ell^{e-1}}$ $g = e_{\ell}e(P, Q)^{deg\phi}$

Going to the left raises to the ℓ

Element of order ℓ , thus $c^{\ell^{e-1}} = g^{d_0}$ (by Pohlig-Hellman we can recover all d_i) Recover small discrete log. using brute force $d_0 = \log_{g^{\ell^{e-1}}} c^{\ell^{e-1}}$

Element of order ℓ , thus $c^{\ell^{e-1}} = g^{d_0}$ (by Pohlig-Hellman we can recover all d_i) Recover small discrete log. using brute force $d_0 = \log_{g^{\ell^{e-1}}} c^{\ell^{e-1}}$ g is fixed, use the powers $g^{0\ell^{e-1}}, g^{1\ell^{e-1}}, \cdots, g^{(\ell-1)\ell^{e-1}}$ (due to RBD), so only comparisons are done in the loop instead of exponentiations.

 $c \in \mu_{\ell^e}$ $c = g^{d_0 + d_1 \ell + \dots + d_{e-1} \ell^{e-1}}$ $g = e_{\ell^e}(P,Q)^{deg\phi}$ c^{ℓ^e} c^{ℓ^e} c^{ℓ^e} c^{ℓ^e} c^{ℓ^e} c^{ℓ^e} c^{ℓ^e}

 $c \in \mu_{\ell^e}$ $c = g^{d_0 + d_1 \ell + \dots + d_{e-1} \ell^{e-1}}$ $g = e_{\ell^e} (P, Q)^{deg\phi}$

- This problem reminds exactly the computation of ℓ^e -degree isogenies.
 - Use Jao-De Feo-Plut algorithm to compute optimal strategy in $O(e \lg e)$

 $c \in \mu_{\ell^e}$ $c = g^{d_0 + d_1 \ell + \dots + d_{e-1} \ell^{e-1}}$ $g = e_{\ell^e}(P, Q)^{deg\phi}$

- This problem reminds exactly the computation of ℓ^e -degree isogenies.
 - Use Jao-De Feo-Plut algorithm to compute optimal strategy in $O(e \lg e)$
- Side-product: generate opt-strategy from $O(e^2)$ to $O(e \log e)$
 - One could compute the strategy "on-the-fly"

 $c \in \mu_{\ell^e}$ $c = g^{d_0 + d_1 \ell + \dots + d_{e-1} \ell^{e-1}}$ $g = e_{\ell^e}(P, Q)^{deg\phi}$

- This problem reminds exactly the computation of ℓ^e -degree isogenies.
 - Use Jao-De Feo-Plut algorithm to compute optimal strategy in O(e lg e)
- Side-product: generate opt-strategy from $O(e^2)$ to $O(e \log e)$
 - One could compute the strategy "on-the-fly"
- Possible to use windowed-DL to recover $d_i \mod \ell^w$ at each leaf.

Table 3: Discrete logarithm computation costs (assuming $\mathbf{s} \approx 0.8 \mathbf{m}$)

group	Costello et al. [5]	ours, $w = 1$ (ratio)	ours, $w = 3$ (ratio)	ours, $w = 6$ (ratio)
$\mu_{2^{372}}$	8271.6m	$4958.4\mathbf{m}$ (0.60)	$3127.9\mathbf{m}$ (0.39)	$2103.7\mathbf{m}$ (0.25)
$\mu_{3^{239}}$	$7999.2\mathbf{m}$	$4507.6\mathbf{m} \ (0.56)$	$2638.1\mathbf{m}$ (0.33)	$1739.8\mathbf{m}$ (0.22)

Binary discrete logs: 1.7×-4× faster

Ternary discrete logs: 1.8×-4.6× faster

Implementation

□ No need for isochronous methods (only public information involved).

□ C implementation available on GitHub (fork of MSR PQCrypto-SIDH)

Table 4: Benchmarks in cycles on an Intel Core i5 clocked at 2.9 GHz (clang compiler with -03 flag, and s = m in this implementation).

	2 ^{<i>w</i>} -torsion ($w = 2$)			3^{n} -torsion ($w = 1$)		
operations	SIDH v2.0 [5]	ours	ratio	SIDH v2.0 [5]	ours	ratio
basis generation discrete log. pairing phase	$\begin{array}{r} 24497344 \\ 6206319 \\ 33853114 \end{array}$	$\begin{array}{r} 1690452 \\ 2776568 \\ 25755714 \end{array}$	$14.49 \\ 2.24 \\ 1.31$	$\begin{array}{r} 20632876 \\ 4710245 \\ 39970384 \end{array}$	$\begin{array}{r} 17930437\\ 3069234\\ 30763841 \end{array}$	$1.15 \\ 1.53 \\ 1.30$
compression decompression	78952537 30057506	$38755681 \\9990949$	2.04 3.01	78919488 25809348	61768917 23667913	1.28 1.09

□ Binary torsion

- Compression time reduced by $2 \times$. Expect > $3 \times$ using larger w.
- Decompression time reduced by 3×

Implementation

□ No need for isochronous methods (only public information involved).

□ C implementation available on GitHub (fork of MSR PQCrypto-SIDH)

Table 4: Benchmarks in cycles on an Intel Core i5 clocked at 2.9 GHz (clang compiler with -03 flag, and s = m in this implementation).

2^{m} -torsion ($w = 2$)			3^n -torsion ($w = 1$)		
SIDH v2.0 [5]	ours	ratio	SIDH v2.0 [5]	ours	ratio
24497344	1690452	14.49	20632876	17930437	1.15
6206319	2776568	2.24	4710245	3069234	1.53
33853114	25755714	1.31	39970384	30763841	1.30
78952537	38755681	2.04	78919488	61768917	1.28
30057506	9990949	3.01	25809348	23667913	1.09
	2 ^{<i>m</i>} -torsi SIDH v2.0 [5] 24497344 6206319 33853114 78952537 30057506	2^{m} -torsion ($w = 1$ SIDH v2.0 [5]ours 24497344 1690452 6206319 2776568 33853114 25755714 78952537 38755681 30057506 9990949	2 ^m -torsion $(w = 2)$ SIDH v2.0 [5]oursratio24497344169045214.49620631927765682.2433853114257557141.3178952537387556812.043005750699909493.01	2^{m} -torsion ($w = 2$) 3^{n} -torsionSIDH v2.0 [5]oursratioSIDH v2.0 [5] 24497344 1690452 14.49 20632876 6206319 2776568 2.24 4710245 33853114 25755714 1.31 39970384 78952537 38755681 2.04 78919488 30057506 9990949 3.01 25809348	2^{m} -torsion $(w = 2)$ 3^{n} -torsion $(w = 1)$ SIDH v2.0 [5]oursratioSIDH v2.0 [5]ours24497344169045214.492063287617930437620631927765682.244710245306923433853114257557141.31399703843076384178952537387556812.0478919488617689173005750699909493.012580934823667913

□ Ternary torsion

- Compression 1.3× speedup. Expect > 2× using larger w
- Decompression time reduced by 1.1×. (new improvements will be available soon)

Summary

□ Improvements in all compression bottlenecks

□ Publicly source code on top of the well-known SIDH library

□ Other results:

- Faster point tripling: 5M+6S instead of 6M+5S by Rao et al
- Slightly faster 3-torsion basis generation

□ Future work:

- Generalize entangled basis for non-binary torsions (seems hard)
- Improve the new bottleneck (pairings)

Questions?

Geovandro C. C. F. Pereira geovandro.pereira@uwaterloo.ca

Questions?

Thanks!

Geovandro C. C. F. Pereira geovandro.pereira@uwaterloo.ca

References

- [2011] Jao, D. and De Feo, L. Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In International Workshop on Post-Quantum Cryptography (pp. 19-34). Springer, Berlin, Heidelberg.
- [2016] Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B. and Leonardi, C. Key compression for isogeny-based cryptosystems. In Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography (pp. 1-10). ACM.
- [2017] Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J. and Urbanik, D. Efficient compression of SIDH public keys. In Annual International Conference on the Theory and Applications of Cryptographic Techniques (pp. 679-706). Springer, Cham.
SIDH Public Key Compression

Appendix

IMPROVED POINT TRIPLING

Point tripling

- New *xz*-only tripling algorithm for the Montgomery curve E: $By^2 = x^3 + Ax^2 + x$.
- Cost: 5M + 6S + 9A (counting any left shift as an addition).
- Best previous algorithm in the literature (by S. R. S. Rao) only attains 6M + 5S + 7A.

• Given
$$(x, z)$$
, compute $(x_3, z_3) = 3 \cdot (x, z)$
 $\Box t_1 \leftarrow x^2, t_2 \leftarrow z^2, t_3 \leftarrow (t_1 - t_2)^2,$
 $\Box t_s \leftarrow t_1 + t_2, t_4 \leftarrow (x + z)^2 - t_s,$
 $\Box t_4 \leftarrow t_3 \cdot (A/2), t_5 \leftarrow 4t_2, t_6 \leftarrow 4t_1,$
 $\Box t_4 \leftarrow t_4 + t_s, t_7 \leftarrow t_4 \cdot t_5, t_8 \leftarrow t_4 \cdot t_6,$
 $\Box t_1 \leftarrow (t_3 - t_7)^2, t_2 \leftarrow (t_3 - t_8)^2,$
 $\Box x_3 \leftarrow x \cdot t_1, z_3 \leftarrow z \cdot t_2.$

ENTANGLED BASIS

Faster Basis Generation

- Entangled Basis generation for E[2^m]
 - □ 2-descent used to get points of full order 2^m .
 - 2-descent: given E/F_q : $y^2 = (x \alpha_1)(x \alpha_2)(x \alpha_3)$, then a point $(x', y') \in 2E$ iff $x' \alpha_1, x' \alpha_2, x' \alpha_3$ are all squares in F_q .
 - Corollary: for a Montgomery curve E_M/F_{p^2} : $By^2 = x(x^2 + Ax + 1)$, a point $(x', y') \notin 2E$ iif x' is non-square in F_{p^2} .
 - Therefore, in order to find full order 2^m points, run through candidates (precomputed table of non-squares) where x' is non-square.

```
• Entangled algorithm(A, u_0, u):
```

```
\Box test A =: a + bi:
            z \leftarrow a^2 + b^2
            s \leftarrow z^{(p+1)/4}
            check s^2 = z
\Box repeat // k times
            lookup next entry (r, v = 1/(1 + ur^2)) from T
            x \leftarrow -A \cdot v // (NB: x nonsquare)
            t \leftarrow x \cdot (x^2 + A \cdot x + 1)
            test t =: c + di quadraticity:
            z \leftarrow c^2 + d^2
            s \leftarrow z^{(p+1)/4}
    until s^2 = z
\Box compute y \leftarrow \sqrt{x^3 + A \cdot x^2 + x}:
            z \leftarrow (c+s)/2
            \alpha \leftarrow z^{(p+1)/4}
           \beta \leftarrow d \cdot (2\alpha)^{-1}
            y \leftarrow (\alpha^2 = z) ? \alpha + \beta i : -\beta + \alpha i
\Box compute basis:
            S_1 \leftarrow (x, y), S_2 \leftarrow (ur^2 x, u_0 r y) // \text{ low cost for small } r
```

Test A quadraticity and select $T \leftarrow T_s$ (or T_n)

```
• Entangled algorithm (A, u_0, u):
      \Box test A =: a + bi:
                                                                                                         Test A quadraticity and select T \leftarrow T_s (or T_n)
                 z \leftarrow a^2 + b^2
                 s \leftarrow z^{(p+1)/4}
                 check s^2 = z
      □ repeat // k times
                 lookup next entry (r, v = 1/(1 + ur^2)) from T //free
                 x \leftarrow -A \cdot v // (NB: x nonsquare)
                 t \leftarrow x \cdot (x^2 + A \cdot x + 1)
                                                                                                          Find first candidate on E
                 test t =: c + di quadraticity:
                 z \leftarrow c^2 + d^2
                 s \leftarrow z^{(p+1)/4}
          until s^2 = z
      \Box compute y \leftarrow \sqrt{x^3 + A \cdot x^2 + x}:
                 z \leftarrow (c+s)/2
                 \alpha \leftarrow z^{(p+1)/4}
                 \beta \leftarrow d \cdot (2\alpha)^{-1}
                 y \leftarrow (\alpha^2 = z) ? \alpha + \beta i : -\beta + \alpha i
      \Box compute basis:
```

 $S_1 \leftarrow (x, y), S_2 \leftarrow (ur^2 x, u_0 r y) // \text{ low cost for small } r$

```
Entangled algorithm (A, u_0, u):
\Box test A =: a + bi:
                                                                                                                            Test A quadraticity and select T \leftarrow T_s (or T_n)
                    z \leftarrow a^2 + b^2
                   s \leftarrow z^{(p+1)/4}
                   check s^2 = z
       \Box repeat // k times
                    lookup next entry (r, v = 1/(1 + ur^2)) from T //free
                    x \leftarrow -A \cdot v // (NB: x nonsquare)
                   t \leftarrow x \cdot (x^2 + A \cdot x + 1)
                   test t =: c + di quadraticity:
                                                                                                                             Find first candidate
                    z \leftarrow c^2 + d^2
                                                                                                                             on E
                    s \leftarrow z^{(p+1)/4}
            until s^2 = z
       □ compute y \leftarrow \sqrt{x^3 + A \cdot x^2} + x:
                    z \leftarrow (c+s)/2
                                                                                                                           Recover y of first candidate on E
                   \alpha \leftarrow z^{(p+1)/4}
                   \boldsymbol{\beta} \leftarrow \boldsymbol{d} \cdot (2\alpha)^{-1}
                   \mathbf{y} \leftarrow (\alpha^2 = \mathbf{z}) ? \boldsymbol{\alpha} + \boldsymbol{\beta} \mathbf{i} : -\boldsymbol{\beta} + \boldsymbol{\alpha} \mathbf{i}
       \Box compute basis:
```

 $S_1 \leftarrow (x, y), S_2 \leftarrow (ur^2 x, u_0 r y) // \text{ low cost for small } r$

```
Entangled algorithm (A, u_0, u):
\Box test A =: a + bi :
                                                                                                                          Test A quadraticity and select T \leftarrow T_s (or T_n)
                   z \leftarrow a^2 + b^2
                   s \leftarrow z^{(p+1)/4}
                   check s^2 = z
       \square repeat // k times
                   lookup next entry (r, v = 1/(1 + ur^2)) from T //free
                   x \leftarrow -A \cdot v // (NB: x nonsquare)
                   t \leftarrow x \cdot (x^2 + A \cdot x + 1)
                   test t =: c + di quadraticity:
                                                                                                                          Find first candidate
                   z \leftarrow c^2 + d^2
                                                                                                                          on E
                   s \leftarrow z^{(p+1)/4}
           until s^2 = z
       □ compute y \leftarrow \sqrt{x^3 + A \cdot x^2} + x:
                   z \leftarrow (c+s)/2
                                                                                                                          Recover y of first candidate on E
                   \alpha \leftarrow z^{(p+1)/4}
                   \boldsymbol{\beta} \leftarrow \boldsymbol{d} \cdot (2\alpha)^{-1}
                   \mathbf{y} \leftarrow (\alpha^2 = \mathbf{z}) ? \boldsymbol{\alpha} + \boldsymbol{\beta} \mathbf{i} : -\boldsymbol{\beta} + \boldsymbol{\alpha} \mathbf{i}
       \Box compute basis:
                   S_1 \leftarrow (x, y), S_2 \leftarrow (ur^2 x, u_0 r y) // \text{ low cost for small } r
                                    Second candidate
                                                                                                                                                                             89
```