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REVIEW: SIDH AND COMPRESSED 
KEYS
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Isogeny-based Crypto

n SIDH: proposed replacement for DH-based elliptic 
curves in a post-quantum world.

n Smallest post-quantum public keys (< 200 bytes)
¨boosted by key compression techniques
¨applications with low bandwidth requirements

n Downside:
¨≈2 order of magnitude slower than Fourℚ-based DH or 

other fast post-quantum KEM schemes (NewHope/NTRU).
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n ! = 2$ ⋅ 3' − 1 for post-quantum sec. level ≈ 128 bits

¨ Previous: 751-bit prime for , = 372, / = 239

¨ [2018] Adj et al. suggest ≈ 448-bit primes are enough

n 23/567 ∶ 9:
;= <= + ?<; + < a supersingular Montgomery curve 

of order p + 1 ; = 2;$3;'

¨ AB, CB = 2(567)[2
$], AH, CH = 2(567)[3

']

n User private key: I ∈K ℤ/ℓNℤ for ℓ ∈ 2,3 , O ∈ {,, /}

n User public key: curve RS,T and points U V , U W .

SIDH Parameter Setting
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n 23/567 ∶ 9:
;= <= + ?<; + < a supersingular Montgomery curve 
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$], AH, CH = 2(567)[3

']

n User private key: I ∈K ℤ/ℓNℤ for ℓ ∈ 2,3 , O ∈ {,, /}

n User public key: curve RS,T = U(23) and points V W , V X ∈

2B,H.

SIDH Parameter Setting
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SIDH Public Key Compression

n Goal: transmit public key {"#,%, & ' , &())}

"#,%/-./: 123 = 56 + 853 + 5
& ' ,& ) ∈ E;,<
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SIDH Public Key Compression

n [2011] Jao et al.’s public key representation:

!,# , $% & , $%(() ∈ +,-
Pub. Key size: . /012 bits

34,5/+,-: #89 = ;< + !;9 + ;
% & ,% ( ∈ E?,@
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SIDH Public Key Compression

n [2016] Azarderakhsh et al.’s key compression:

!"#,%# ← '()*,+)

isomorphic curve 

'()*,+)

)*,+/./0: 234 = 67 + 964 + 6
: ; ,: < ∈ E?,@
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SIDH Public Key Compression

n [2016] Azarderakhsh et al.’s key compression:

! "#,% ∈ '(): * +,-. bits

vs
#,% ∈ '(): / +,-. bits

* 012. bits saved

"#,%/'(): 567 = 9: + <97 + 9
= > ,= ? ∈ EA,B
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SIDH Public Key Compression

n [2016] Azarderakhsh et al.’s key compression:

There is a canonical basis {"#, "%} such	that

"#, "% = /0,1 33

Idea: express 

4 5 = 6#"# + 6%"%
4 8 = 9#"# + 9%"%

:(<=,>)

<=,>/ABC: EF% = GH + IG% + G
4 5 ,4 8 ∈ /0,1
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- Internal product: pairing
-Coeff. extraction: DLOG

Linear algebra tasks
-Build a basis



SIDH Public Key Compression

n [2016] Azarderakhsh et al.’s key compression:

Find !", !$: 
Expensive scalar multiplications involved

%('(,))

Compression (1/3):

• find a basis {!", !$}

'(,)/./0: 23$ = 56 + 85$ + 5
9 : ,9 ; ∈ =>,?
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9 : = @"!" + @$!$
9 ; = A"!" + A$!$



SIDH Public Key Compression

! " = $%&% + $(&(
! ) = *%&% + *(&(
+ = ,-. /0, /2

+3 = ,-. /0,4 5

+0 = ,-. /2,4 5

+2 = ,-. /0,4 6

+- = ,-. /2,4 6

n [2016] Azarderakhsh et al.’s key compression:

7(9:,;)

Compression (2/3):

• prepare DLOG instances 
• Cost: 5 pairings

9:,;/>?@: BC( = DE + FD( + D
! " ,! ) ∈ HI,J
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SIDH Public Key Compression

n [2016] Azarderakhsh et al.’s key compression:

! " = $%&% + $(&(
! ) = *%&% + *(&(

+, = − ./01 1,

+2 = ./01 13

4, = − ./01 15

42 = ./01 12

Compression (3/3):

• Compute $6’s and *6’s
• Cost: 4 order 38 DLOGs 

(Pohlig-Hellman)

9(;<,>)

;<,>/ABC: EF( = GH + IG( + G
! " ,! ) ∈ KL,M
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SIDH Public Key Compression

n [2016] Azarderakhsh et al.’s key compression:

!(#$,&)
(), (*, +), +* ∈ ℤ./

#$,&/123: 567 = 9. + ;97 + 9
< = ,< > ∈ ?@,A
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SIDH Public Key Compression

n [2016] Azarderakhsh et al.’s key compression:

!(#$,&)
(), (*, +), +* ∈ ℤ./ 0: * 1234 bits

Vs
56 7 , 56(8) ∈ 9:;: < 1234 bits

* =>?4 bits saved

#$,&/A:;: CDE = 5. + H5E + 5
I J ,I K ∈ LM,N
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SIDH Public Key Compression

n [2016] Azarderakhsh et al.’s key compression:

Decompression

• Compute ⟨"#, "%⟩ = ()*,+*[3.]

• Recover points:

0 1 ← 34"# + 36"%
0 7 ← 84"# + 86"%

• Cost: 4 scalar muls.

9(;<,=)
34, 36, 84, 86

;<,=/@AB: DE% = FG + HF% + F
I J ,I K ∈ (),+
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SIDH Public Key Compression

n [2016] Azarderakhsh et al.’s key compression:

! "#,% ∈ '(): * +,-.bits

/0, /*, 10, 1* ∈ ℤ34: * +,-. bits
vs

#,% ∈ 5(): 6 +,-. bits
7 8(:) , 7 8 < : 6 +,-. bits

Public key size: 6 =>?. bits
• Keys shrunk by 2× J

• Compression time > 0C× KEX L
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SIDH Public Key Compression

n [2017] Costello et al. key compression:

!/#$%: '(
) = +, + .+) + +

/ 0 ,/ 2 ∈ 4
Further compression

• Bob recovers 5 6 ,5 7 to compute the kernel

8 = ⟨5 6 + :;5 7 ⟩

= => + :;?>)A> + (=)+:;?>)A)

• wlog. assume => is invertible CDE 3G (otherwise ?> is), then

=>
H>8 = 1 + JK?>=>

H> A> + (=)=>
H> + JK?)=>

H>)A) = 8

L(4M,;)

NO, NP, QO, QP
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SIDH Public Key Compression

n [2017] Costello et al.’s key compression:

!/#$%: '() = +, + .+) + +
/ 0 ,/ 2 ∈ 4 3 elements in ℤ,6 are enough:

7 = 89:9;9 ∈ ℤ,6
< = :):9;9 ∈ ℤ,6
= = 8):9;9 ∈ ℤ,6

Plus 1 bit about invertibility of :9 or 89

>, ?, @ ∈ ℤ,6 A: A/B CDEF bits
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SIDH Public Key Compression

n 2017, Costello et al.’s key compression:

!/#$%: '() = +, + .+) + +
/ 0 ,/ 2 ∈ 4 To compress / 0 , / 2 :

• generate basis 56, 5)
• compute 5 pairings 

• NB: cost of 5-way Monty Inv.: 30 muls (report)

• compute 4 DLOGs, i.e., {86, 8), 96, 9)}
• compute ;, <, = from the quadruple above

Optimizations on 
steps 1, 2 and 3
of compression and 
on decompression.
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SIDH Public Key Compression

n 2017, Costello et al.’s key compression:

!(#) ∈ &'(: ) *+,- bits
.,0, 1 ∈ ℤ34 3: 5/) *+,- bits

7/8'(: :;
< = >3 + @>< + >

A B ,A C ∈ #
Public key size: 5. E FGH- bits

• Ex.: IJ = 328 bytes for I = 751 bits

Compression time ≈ R× KEX and decompression ≈ T. U× KEX
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n Is the current (de)compression performance acceptable?

SIDH Public Key Compression
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n Is the current (de)compression performance acceptable?

n Current state of classical elliptic curves:
¨ CHES’2017*: speed records for ECDH on embedded devices using 

curve Fourℚ.

n Compression = free (similar to original SIDH, send one coordinate of the point)

n Decompression = 0.04x key agreement

SIDH Public Key Compression

*Liu Z, Longa P, Pereira G, Reparaz O, Seo H. FourQ on embedded devices with strong countermeasures against side-channel attacks.34
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n Current state of classical elliptic curves:
¨ CHES’2017*: speed records for ECDH on embedded devices using 

curve Fourℚ.

n Compression = free (similar to original SIDH, send one coordinate of the point)

n Decompression = 0.04x key agreement

n This work’s goal is reduce this gap
¨ Detect and improve the remaining SIDH key compression bottlenecks.

SIDH Public Key Compression

*Liu Z, Longa P, Pereira G, Reparaz O, Seo H. FourQ on embedded devices with strong countermeasures against side-channel attacks.35



n Most costly operations:
I. Computing a basis !", !$
II. Computing 5 pairings

III. Computing 4 discrete logs

Faster SIDH Public Key Compression
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n Most costly operations:
I. Computing a basis !", !$
II. Computing 5 pairings

III. Computing 4 discrete logs

n New algorithms to address the above bottlenecks.

Ø Reverse basis decomposition

Ø Pairings reduced to 4 instead of 5 for both sides.

Ø 2 multiplications by large cofactor 3& saved in the binary case.

Ø Allows for faster discrete logs.: precompute (single, shared) table offline.

Faster SIDH Public Key Compression
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Reverse basis decomposition

n Previous works express the public key as

! " = $%&% + $(&(
! ) = *%&% + *(&(

n or	in	matrix	notation

!(")
!()) =

$% $(
*% *(

&%
&(

n Since	{! " , ! ) } also	form	a	basis,	matrix	@ is	invertible	and	changing	roles:

&%
&(

=
F% F(
G% G(

!(")
!())

n Idea:	revert	the	process	by	starting	from	@K% and	recovering	@ from	it?

@(M(

@K%
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n Express {"#, "%} in basis {' ( , '(*)}

Reverse basis decomposition

"# = -#'(() + -%'(*)
"% = /#'(() + /%'(*)

0 ' ( , "# = 0('((), -#'(() + -%'(*))
= 0 '((), -#'(() ⋅ 0 '((), -%'(*)
= 0 '((), '(() 23 ⋅ 0 '((), '(*) 24

= 0 '((), '(*) 24

41



n Express {"#, "%} in basis {' ( , '(*)}
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n Express {"#, "%} in basis {' ( , '(*)}

"# = -#'(() + -%'(*)
"% = /#'(() + /%'(*)

0 ' ( , "# = 0('((), -#'(() + -%'(*))
= 0 '((), -#'(() ⋅ 0 '((), -%'(*)
= 0 '((), '(() 23 ⋅ 0 '((), '(*) 24

= 5 6(7),6(8) 24

Reverse basis decomposition
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n Express {"#, "%} in basis {' ( , '(*)}

"# = -#'(() + -%'(*)
"% = /#'(() + /%'(*)

0 ' ( , "# = 0('((), -#'(() + -%'(*))
= 0 '((), -#'(() ⋅ 0 '((), -%'(*)
= 0 '((), '(() 23 ⋅ 0 '((), '(*) 24

= 5 6(7),6(8) 24

9
ℎ = 5 6(7), 6(8)
= 5 7, ;6 ∘ 6(8)

Reverse basis decomposition
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n Express {"#, "%} in basis {' ( , '(*)}
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9
ℎ = 5 6(7), 6(8)
= 5 7, ;6 ∘ 6(8)
= 5 7, [>5? 6]8

Reverse basis decomposition
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n Express {"#, "%} in basis {' ( , '(*)}

"# = -#'(() + -%'(*)
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9
ℎ = 5 6(7), 6(8)
= 5 7, ;6 ∘ 6(8)
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n Express {"#, "%} in basis {' ( , '(*)}

"# = -#'(() + -%'(*)
"% = /#'(() + /%'(*)

0 ' ( , "# = 0('((), -#'(() + -%'(*))
= 0 '((), -#'(() ⋅ 0 '((), -%'(*)
= 0 '((), '(() 23 ⋅ 0 '((), '(*) 24

= 5 6(7),6(8) 24

9
ℎ = 5 6(7), 6(8)
= 5 7, ;6 ∘ 6(8)
= 5 7, [>5? 6]8
= 5 7,8 >5? 6

ℎ only depends on public information ((, *, deg'), 
thus can be precomputed once and for all
and made available in the public parameters.

Reverse basis decomposition
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n Express {"#, "%} in basis {' ( , '(*)}

"# = -#'(() + -%'(*)
"% = /#'(() + /%'(*)

0 = 1 2(3),2(4)
05 = 1 2(3), 67
07 = 1 2 3 ,68
08 = 1 2 4 ,67
09 = 1 2(4), 68

-#, -%, /#, /% = log={ℎ? , ℎ#, ℎ%, ℎ@}

fixed in the public params

4 pairings computed 
at runtime
(NB: cost of 4-way Monty inv.: 
12 muls)

Reverse basis decomposition
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n Express {"#, "%} in basis {' ( , '(*)}

"# = -#'(() + -%'(*)
"% = /#'(() + /%'(*)

0 = 1 2(3),2(4)
05 = 1 2(3), 67
07 = 1 2 3 ,68
08 = 1 2 4 ,67
09 = 1 2(4), 68

-#, -%, /#, /% = log={ℎ? , ℎ#, ℎ%, ℎ@}

Reverse basis decomposition

recover AB#

fixed in the public params

49

4 pairings computed 
at runtime
(NB: cost of 4-way Monty inv.: 
12 muls)



n Reverting to ! = !#$ #$, i.e., recover &', &(, )', )(:
&' &(
)' )( = 1

Δ
,- −,$
−/- /$

where Δ = det!#$ = /$,- − /-,$ (45, ℓ7)

Reverse basis decomposition
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n Reverting to ! = !#$ #$, i.e., recover &', &(, )', )(:
&' &(
)' )( = 1

Δ
,- −,$
−/- /$

where Δ = det!#$ = /$,- − /-,$ (45, ℓ7)
n But Alice only sends (assuming 9$ invertible):

: = ;$9$#$

< = 9-9$#$

= = ;-9$#$

Reverse basis decomposition
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n Reverting to ! = !#$ #$, i.e., recover &', &(, )', )(:
&' &(
)' )( = 1

Δ
,- −,$
−/- /$

where Δ = det!#$ = /$,- − /-,$ (45, ℓ7)
n But Alice only sends (assuming 9$ invertible):

: = −/-Δ ⋅
Δ
,-

= − /-
,-

< = −,$Δ ⋅ Δ,-
= −,$,-

= = /$
Δ ⋅

Δ
,-

= /$
,-

Reverse basis decomposition

1 inv. + 3 muls. (45, ℓ7)
Same operations as before
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n Swapped (reduced) Tate pairing arguments

Reverse basis decomposition

ℎ" = $ %('), *+
ℎ+ = $ % ' , *,
ℎ, = $ % - , *+
ℎ. = $ %(-), *,

such that [ℎ]*12= *1
34′ = 64′7(8) + 6:′7(;)
3:′ = <4′7(8) + <:′7(;)
[=>]6?2= 6?, => <?2 = <?
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n Swapped (reduced) Tate pairing arguments

n Second argument do not need to be cofactor reduced

Reverse basis decomposition

ℎ" = $ %('), *′,
ℎ, = $ % ' , *′-
ℎ- = $ % . , *′,
ℎ/ = $ %(.), *′-

such that [ℎ]*23= *2
45′ = 65′7(8) + 6:′7(;)
4:′ = <5′7(8) + <:′7(;)
[=>]6?3= 6?, => <?3 = <?
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n Swapped (reduced) Tate pairing arguments

n Second argument do not need to be cofactor reduced

Reverse basis decomposition

DLOGs are up to cofactor ℎ"#

Simply post-multiply by ℎ in ℤℓ&

ℎ' = ) *(,), /′#
ℎ# = ) * , , /′1
ℎ1 = ) * 2 , /′#
ℎ3 = ) *(2), /′1

such that [ℎ]/67= /6
89′ = :9′*(,) + :<′*(2)
8<′ = =9′*(,) + =<′*(2)

s.t. [ℎ]>67= >6, ℎ ?67 = ?6
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n Swapped (reduced) Tate pairing arguments

n Second argument do not need to be cofactor reduced

n Two scalar muls. by 3" saved in the binary torsion using Entangled Basis.

Reverse basis decomposition

DLOGs are up to cofactor ℎ$%

Simply post-multiply by ℎ in ℤℓ(

ℎ) = + ,(.), 1′%
ℎ% = + , . , 1′3
ℎ3 = + , 4 , 1′%
ℎ5 = + ,(4), 1′3

such that [ℎ]189= 18
:;′ = <;′,(.) + <>′,(4)
:>′ = ?;′,(.) + ?>′,(4)

s.t. [ℎ]@89= @8, ℎ A89 = A8
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n Most costly operations:
I. Computing a basis !", !$
II. Computing 5 pairings

III. Computing 4 discrete logs

n New algorithms to address the above bottlenecks.

I. Entangled basis for the (Alice) binary $%-torsion

Idea: generate a candidate basis {'(, ')} by “subverting Elligator 2” formulas

SIDH Public Key Compression
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“Entangled” basis generation

n Elligator 2 in a nutshell:

¨ Montgomery curve: E/#$%: '() = +, + .+) + +

¨ Let / ∈ #1% be a non-square.

¨ Define 2 ≔ 1/(1 + /6)) where 6 ∈ #$%.

¨ [Thm. Bernstein et al.] If / is a non-square, then exactly one of  

8 = −:;
or

8 = :; − :
is the abscissa of a point on <.
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“Entangled” basis generation

n Recall: to build a basis for ![2$] we need two full order L.I. points

n Getting points of order 2$ on Montgomery curves is cheaper using the 2-

descent:

¨ A point (', )) is not in the image of 2 ! iff ' is a non-square.

n Search only for non-square abscissas.
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“Entangled” basis generation

n The entangled basis for ![2$]:

¨ Montgomery curve: E/()*: ,-. = 01 + 30. + 0

¨ Let 4 ∈ (6* be a non-square where 7 = 78
9 for 78 ∈ (:9 ∖ (:.

¨ Define 2 tables <=, <? of pairs (A, B ≔ D

DE7F9
) that contain only H squares and non-

squares, respectively, and F ∈ (:.

¨ If 3 is square we pick candidates H from IJ such that K = −MB is non-square and 

pick H from IN otherwise.

¨ Theorem: choosing the parameters as above, the points whose abscissas are 

K = −MB and  K = MB − M

are either both not on ! or both on !, of order multiple of 2$ and linear
independent.
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n Entangled Basis ! 2# = ⟨[3(]*+, 3( *-⟩
¨ Find one basis point and the other is for free!

¨ Two cofactor multiplications by 3( saved on compression!

n Recall Bob can compute /-0(2 ∗ , 4′6) and still compress his key

¨ No L.I. test required!

n Previous works remove cofactors 3( and multiply both candidate points by 2#8+.

¨ Theoretical estimates and practical experiments show a 15× (!) 

speedup

Faster Basis Generation
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n Most costly operations:
I. Computing a basis !", !$
II. Computing 5 pairings

III. Computing 4 discrete logs

n New algorithms to address the three above bottlenecks.

o In addition to the reduction in number of pairings we investigated 
the plain Tate pairing over Weierstrass form with Jacobian 
coordinates and notice a faster pairing computation than Costello et 
al.’s version based on Montgomery-like formulas.

o No need to store numerators and denominators separately due to 
(partial) denominator elimination.

o Improvement of about 28% for binary and 22% for ternary pairings.

SIDH Public Key Compression
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n Most costly operations:
I. Computing a basis !", !$
II. Computing 5 pairings

III. Computing 4 discrete logs

n New algorithms to address the three above bottlenecks.

III. An optimal strategy for Pohlig-Hellman

Ø Inspired by Shoup’s RDL method

Ø Adopts Jao-De Feo-Plût’s isogeny computation to obtain optimal strategy

Ø Attain % & lg & complexity which was informally conjectured by Shoup

Ø Combination is non-trivial (more improvements for DL than are possible for 
isogeny computation)

SIDH Public Key Compression
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Discrete log and optimal strategy
! ∈ #ℓ%

! = '()*(+ℓ*⋯*(%-+ℓ%-+

' = .ℓ% /, 1 (234
!
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Discrete log and optimal strategy

!

!ℓ#

Going to the left raises to the ℓ
! ∈ %ℓ&

! = ()*+),ℓ+⋯+)&.,ℓ&.,

( = /ℓ& 0, 2 )345
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Discrete log and optimal strategy

!ℓ#

!ℓ$%&

Element of order ℓ, thus !ℓ$%& = ()* (by Pohlig-Hellman we can recover all +,)
Recover small discrete log. using brute force +- = log1ℓ$%& !

ℓ$%&

!

! ∈ 3ℓ$
! = ()*4)&ℓ4⋯4)$%&ℓ$%&

( = 6ℓ$ 7, 9 ):1;
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Discrete log and optimal strategy

!ℓ#

!ℓ$%&

Element of order ℓ, thus !ℓ$%& = ()* (by Pohlig-Hellman we can recover all +,)
Recover small discrete log. using brute force +- = log1ℓ$%& !

ℓ$%&

( is fixed, use the powers (-ℓ$%&, (3ℓ$%&,⋯ , ( ℓ53 ℓ$%& (due to RBD), 

so only comparisons are done in the loop instead of exponentiations.

!

! ∈ 7ℓ$
! = ()*8)&ℓ8⋯8)$%&ℓ$%&

( = 9ℓ$ :, ; )<1=
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Discrete log and optimal strategy

!ℓ#

!ℓ$%&

Going to the right erases the digit!
! = ! ⋅ )*+,

! ∈ .ℓ$
! = )+,/+&ℓ/⋯/+$%&ℓ$%&

) = 1ℓ$ 2, 4 +567
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Discrete log and optimal strategy

!ℓ#

!ℓ$%&

Going to the right erases the digit!
! = ! ⋅ )*+,

! ∈ .ℓ$
! = )+,/+&ℓ/⋯/+$%&ℓ$%&

) = 1ℓ$ 2, 4 +567

Constant cost: 19 + negation
(inversion is just a conjugation in .ℓ$)
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Discrete log and optimal strategy
! ∈ #ℓ%

! = '()*(+ℓ*⋯*(%-+ℓ%-+

' = .ℓ% /, 1 (234

71

• This problem reminds exactly the computation of ℓ2-degree isogenies.
• Use Jao-De Feo-Plut algorithm to compute optimal strategy in 5(. lg .)

• Side-product: generate opt-strategy from 5(:;) to 5(: log :)
• One could compute the strategy “on-the-fly”

• Possible to use windowed-DL to recover => ?@= ℓA at each leaf.



Discrete log and optimal strategy
! ∈ #ℓ%

! = '()*(+ℓ*⋯*(%-+ℓ%-+

' = .ℓ% /, 1 (234
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• This problem reminds exactly the computation of ℓ2-degree isogenies.
• Use Jao-De Feo-Plut algorithm to compute optimal strategy in 5(. lg .)

• Side-product: generate opt-strategy from 5(.:) to 5(. log .)
• One could compute the strategy “on-the-fly”

• Possible to use windowed-DL to recover <= >?< ℓ@ at each leaf.



Discrete log and optimal strategy

• This problem reminds exactly the computation of ℓ"-degree isogenies.
• Use Jao-De Feo-Plut algorithm to compute optimal strategy in #(% lg %)

• Side-product: generate opt-strategy from #(%)) to #(% log %)
• One could compute the strategy “on-the-fly”

• Possible to use windowed-DL to recover +, -.+ ℓ/ at each leaf.

0 ∈ 2ℓ3
0 = 567869ℓ8⋯863;9ℓ3;9

5 = %ℓ3 <, > 6"?@
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Discrete log and optimal strategy

Binary discrete logs: 1.7×−4× faster 

Ternary discrete logs: 1.8×−4.6× faster 
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Implementation

¨ No need for isochronous methods (only public information involved).

¨ C implementation available on GitHub (fork of MSR PQCrypto-SIDH)

¨ Binary torsion

n Compression time reduced by 2×. Expect > 3× using larger %.

n Decompression time reduced by 3×
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Implementation

¨ No need for isochronous methods (only public information involved).

¨ C implementation available on GitHub (fork of MSR PQCrypto-SIDH)

¨ Ternary torsion

n Compression 1.3× speedup. Expect > 2× using larger '
n Decompression time reduced by 1.1×. (new improvements will be available soon)
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Summary

¨ Improvements in all compression bottlenecks

¨ Publicly source code on top of the well-known SIDH library

¨ Other results:

n Faster point tripling: 5M+6S instead of 6M+5S by Rao et al

n Slightly faster 3-torsion basis generation

¨ Future work:

n Generalize entangled basis for non-binary torsions 

(seems hard)

n Improve the new bottleneck (pairings)
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Questions?

Geovandro C. C. F. Pereira
geovandro.pereira@uwaterloo.ca
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Questions?

Geovandro C. C. F. Pereira
geovandro.pereira@uwaterloo.ca
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Thanks!
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Appendix

SIDH Public Key Compression
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IMPROVED POINT TRIPLING
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Point tripling

n New !"-only tripling algorithm for the Montgomery curve # ∶
%&' = !) + +!' + !.

n Cost: 5- + 6/ + 91 (counting any left shift as an addition).
n Best previous algorithm in the literature (by S. R. S. Rao) 

only attains 6- + 5/ + 71.
n Given !, " , compute !), ") = 3 ⋅ !, " :

¨ 67 ← !', 6' ← "', 6) ← 67 − 6' ',
¨ 6: ← 67 + 6', 6; ← ! + " ' − 6:,
¨ 6; ← 6) ⋅ (+/2), 6@ ← 46', 6B ← 467,
¨ 6; ← 6; + 6:, 6C ← 6; ⋅ 6@, 6D ← 6; ⋅ 6B,
¨ 67 ← 6) − 6C ', 6' ← 6) − 6D ',
¨ !) ← ! ⋅ 67, ") ← " ⋅ 6'.
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ENTANGLED BASIS
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n Entangled Basis generation for ![2$]
¨ 2-descent used to get points of full order 2$.

n 2-descent: given !/'(: *+ = (. − 01)(. − 0+)(. − 03), then a point .′, *′ ∈ 2! iif

.7 − 01, .7 − 0+, .7 − 03 are all squares in '(.

n Corollary: for a Montgomery curve !8/'9:: ;*+ = .(.+ + =. + 1), a point .7, *7 ∉
2! iif .′ is non-square in '9:.

n Therefore, in order to find full order 2$ points, run through candidates 

(precomputed table of non-squares) where .′ is non-square.

Faster Basis Generation
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“Entangled” basis generation

n Entangled algorithm(! , #$, #):

¨ test & =: ) + +, :
- ← )/ + +/

0 ← - 123 /5

check 0/ = -

¨ repeat // 6 times
lookup next entry 7, 8 = 1/ 1 + #7: from T
; ← –! ⋅ 8 // (NB: x nonsquare)
> ← ; ⋅ ;: + ! ⋅ ; + 1

test > =: ? + @A quadraticity:
B ← ?: + @:

C ← B D2E /F

until C: = B

¨ compute G ← ;H + ! ⋅ ;: + ; :
B ← ? + C /2

J ← B D2E /F

K ← @ ⋅ 2J LE

G ← J: = B ? J + KA ∶ −K + JA

¨ compute basis:
PE ← (;, G), P: ← (#7:;, #$7G) // low cost for small 7

Test ! quadraticity and 
select R ← RS (T7 RU)
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“Entangled” basis generation

n Entangled algorithm(! , #$, #):

¨ test ! =: ( + *+ :
, ← (. + *.

/ ← , 012 /4

check /. = ,

¨ repeat // 5 times
lookup next entry 6, 7 = 8/ 8 + 96: from T //free
; ← –= ⋅ 7 // (NB: x nonsquare)
? ← ; ⋅ ;: + = ⋅ ; + 8

test ? =: @ + AB quadraticity:
C ← @: + A:

D ← C E18 /F

until D: = C

¨ compute G ← HI + ! ⋅ H. + H :
, ← J + / /2

L ← , 012 /4

M ← N ⋅ 2L O2

G ← L. = , ? L + M+ ∶ −M + L+

¨ compute basis:
S2 ← (H, G), S. ← (#U.H, #$UG) // low cost for small U

Test ! quadraticity and 
select V ← VW (XU VY)

Find first candidate
on Z
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“Entangled” basis generation

n Entangled algorithm(! , #$, #):

¨ test ! =: ( + *+ :
, ← (. + *.

/ ← , 012 /4

check /. = ,
¨ repeat // 5 times

lookup next entry 6, 7 = 1/ 1 + #6. from T //free
9 ← –! ⋅ 7 // (NB: x nonsquare)
< ← 9 ⋅ 9. + ! ⋅ 9 + 1
test < =: = + >+ quadraticity:
, ← =. + >.

/ ← , 012 /4

until /. = ,

¨ compute ? ← @A + B ⋅ @C + @ :
D ← E + F /C
G ← D H1I /J

K ← L ⋅ CG MI

? ← GC = D ?G + KO ∶ −K + GO

¨ compute basis:
R2 ← (9, T), R. ← (#6.9, #$6T) // low cost for small 6

Test ! quadraticity and 
select U ← UV (W6 UX)

Find first candidate
on Y

Recover T of first 
candidate on Y
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“Entangled” basis generation

n Entangled algorithm(! , #$, #):

¨ test ! =: ( + *+ :
, ← (. + *.

/ ← , 012 /4

check /. = ,
¨ repeat // 5 times

lookup next entry 6, 7 = 1/ 1 + #6. from T //free
9 ← –! ⋅ 7 // (NB: x nonsquare)
< ← 9 ⋅ 9. + ! ⋅ 9 + 1
test < =: = + >+ quadraticity:
, ← =. + >.

/ ← , 012 /4

until /. = ,

¨ compute ? ← @A + B ⋅ @C + @ :
D ← E + F /C
G ← D H1I /J

K ← L ⋅ CG MI

? ← GC = D ?G + KO ∶ −K + GO

¨ compute basis:
R2 ← (9, T), R. ← (#6.9, #$6T) // low cost for small 6

Test ! quadraticity and 
select U ← UV (W6 UX)

Find first candidate
on Y

Recover T of first 
candidate on Y
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