MATH CIRCLE AT FAU

MORE COUNTING, THIS AND THAT

A QUICK REFRESHER

- Ms. Nakamura's class has 25 students. Ms. Nakamura wants to select 7 students to represent the class at the next festivities. In how many different ways can she do this?

A QUICK REFRESHER

- Ms. Nakamura's class has 25 students. Ms. Nakamura wants to select 7 students to represent the class at the next festivities. In how many different ways can she do this?

$$
\begin{aligned}
n! & =1 \times 2 \times 3 \times \cdots \times n \\
1! & =1,2!=2,3!=6,4!=24,5!=120, \ldots \\
0! & =1(\text { Because it works }) \\
\binom{n}{k} & =\frac{n(n-1) \cdots(n-k+1)}{k!}, \\
\binom{n}{0} & =1\binom{n}{1}=n,\binom{n}{2}=\frac{n(n-1)}{2}, \\
\binom{n}{3} & =\frac{n(n-1)(n-2)}{6}, \ldots,\binom{n}{n}=1 . \\
\binom{n}{k} & =0 \text { if } k>n .
\end{aligned}
$$

A QUICK REFRESHER

- Ms. Nakamura's class has 25 students. Ms. Nakamura wants to select 7 students to represent the class at the next festivities. In how many different ways can she do this?

$$
\begin{aligned}
n! & =1 \times 2 \times 3 \times \cdots \times n \\
1! & =1,2!=2,3!=6,4!=24,5!=120, \ldots \\
0! & =1(\text { Because it works }) \\
\binom{n}{k} & =\frac{n(n-1) \cdots(n-k+1)}{k!}, \\
\binom{n}{0} & =1\binom{n}{1}=n,\binom{n}{2}=\frac{n(n-1)}{2}, \\
\binom{n}{3} & =\frac{n(n-1)(n-2)}{6}, \ldots,\binom{n}{n}=1 . \\
\binom{n}{k} & =0 \text { if } k>n .
\end{aligned}
$$

MS. NAKAMURA'S CLASS AGAIN

Ms. Nakamura's class has 25 students, 10 boys and 15 girls. Of the students, 4 boys and 7 girls are excellent singers; the rest of the students are just so-so. Ms. Nakamura has to assemble a cast for a production of an opera. She needs 2 boys and 3 girls with excellent voices for the lead roles, and then a chorus of 5 boys and 5 girls from among the remaining students, making sure that the excellent singers not chosen for the lead roles are part of the chorus. In how many different ways can such a cast be assembled?

MS. NAKAMURA'S CLASS AGAIN, SOLVED

Ms. Nakamura's class has 25 students, 10 boys and 15 girls. Of the students, 4 boys and 7 girls are excellent singers; the rest of the students are just so-so. Ms. Nakamura has to assemble a cast for a production of an opera. She needs 2 boys and 3 girls with excellent voices for the lead roles, and then a chorus of 5 boys and 5 girls from among the remaining students, making sure that the excellent singers not chosen for the lead roles are part of the chorus. In how many different ways can such a cast be assembled?

Solution. Ms. Nakamura has to choose 2 boys from 4, 3 girls from 7, for the lead roles. For the chorus, since the two remaining boys and the 4 remaining girls are automatically in it, she has to select 3 boys from 6 and 2 girls from 11. The total number of different ways this can be done is

$$
\binom{4}{2} \times\binom{ 7}{3} \times\binom{ 6}{3} \times\binom{ 11}{2}=6 \times 35 \times 20 \times 55=231000 \text { different ways. }
$$

NOW FOR SOMETHING COMPLETELY DIFFERENT

- Two people left at dawn, at the exact same time, one traveling from A to B, the other one from B to A. They travel at a constant speed, without stopping. They meet at noon. The first one arrives at B at 4 p.m., the second one arrives at A at 9 p.m.
- At what time was dawn that day?

NOW FOR SOMETHING COMPLETELY DIFFERENT

- Two people left at dawn, at the exact same time, one traveling from A to B, the other one from B to A. They travel at a constant speed, without stopping. They meet at noon. The first one arrives at B at 4 p.m., the second one arrives at A at 9 p.m.
- At what time was dawn that day?
$\frac{d}{4}=\frac{a}{b}, \frac{d}{9}=\frac{b}{a}$
Since $\frac{a}{b}=\frac{b}{a}$ we get $\frac{d}{4}=\frac{9}{d}$ thus $d^{2}=36$.
So $d=6,12-d=6$.
Dawn is at 6 am.

THE 2, 3, 5 QUESTION

- How many numbers in the range 1-1000 are NOT divisible by 2,3 , or 5 ?

THE 2, 3, 5 QUESTION SOLVED

- How many numbers in the range 1-1000 are NOT divisible by 2,3 , or 5 ?
- It is easier to count numbers that are multiples of 2,3 , or 5 .
- Principle of Inclusion-Exclusion:
- \#(Multiples of 2, 3, 5) = \#(Mult. 2) + \#(Mult. 3) + \#(Mult.5) - \#(Mult.6) - \#(Mult, 10) - \#(Mult, 15) + \#(Mult 30).
- Works out to $500+333+200-166-100-66+33=734$
- There are 1000 numbers in the range, $1000-734=266$.
- The answer is 266.

A TILING PROBLEM

- Leonardo wishes to tile a rectangular path that is 10 feet 120 inches long and 10inches wide. He wants to use 24 $10^{\prime \prime} \times 5^{\prime \prime}$ rectangular tiles, all of the same green color, to do this. In how many different ways can Leonardolay the tiles?

A TILING PROBLEM

- Leonardo wishes to tile a rectangular path that is 10 feet= 120 inches long and 10inches wide. He wants to use 24 $10^{\prime \prime} \times 5^{\prime \prime}$ rectangular tiles, all of the same color, to do this. In how many different ways can Leonardo lay the tiles?
- He could start this way:

A TILING PROBLEM

- Leonardo wishes to tile a rectangular path that is 10 feet $=120$ inches long and 10inches wide. He wants to use 24 $10^{\prime \prime} \times 5^{\prime \prime}$ rectangular tiles, all of the same color, to do this. In how many different ways can Leonardo lay the tiles?
- He could start this way:
- Or this way:

A TILING PROBLEM

- Leonardo wishes to tile a rectangular path that is 10 feet $=120$ inches long and 10inches wide. He wants to use 24 $10^{\prime \prime} \times 5^{\prime \prime}$ rectangular tiles, all of the same green color, to do this. In how many different ways can Leonardo lay the tiles?
- He could start this way:

Once you figure out the answer, here are two additional challenges: What is the

- Or this way:
 answer if the strip to be tiled is $15^{\prime \prime}$ wide? What if the tiles are of different colors? Say black and white. (To think about at home)

TILING SOLUTION

- Suppose s_{n} is the number of different ways we can tile $5 n$ inches of the strip. We need to find s_{24}. We saw $s_{1}=$ $1, s_{2}=2$. How can we get to tile $5 n$ inches, $n \geq 3$? We can either cover $5(n-1)$ inches and lay one vertical tile, or we can tile $5(n-2)$ inches and add two horizontal tiles. It follows that $s_{n}=s_{n-1}+s_{n-2}$. So here is how the values of s_{n} evolve:
- $1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,17711,28657$, 46368, 75025,
- There are 75,025 different ways to tile the strip.

