MATH CIRCLE AT FAU

MORE COUNTING, THIS AND THAT

A QUICK REFRESHER

- Ms. Nakamura's class has 25 students. Ms. Nakamura wants to select 7 students to represent the class at the next festivities. In how many different ways can she do this?

A QUICK REFRESHER

- Ms. Nakamura's class has 25 students. Ms. Nakamura wants to select 7 students to represent the class at the next festivities. In how many different ways can she do this?

$$
\begin{aligned}
n! & =1 \times 2 \times 3 \times \cdots \times n \\
1! & =1,2!=2,3!=6,4!=24,5!=120, \ldots \\
0! & =1(\text { Because it works }) \\
\binom{n}{k} & =\frac{n(n-1) \cdots(n-k+1)}{k!}, \\
\binom{n}{0} & =1\binom{n}{1}=n,\binom{n}{2}=\frac{n(n-1)}{2}, \\
\binom{n}{3} & =\frac{n(n-1)(n-2)}{6}, \ldots,\binom{n}{n}=1 . \\
\binom{n}{k} & =0 \text { if } k>n .
\end{aligned}
$$

MS. NAKAMURA'S CLASS AGAIN

Ms. Nakamura's class has 25 students, 10 boys and 15 girls. Of the students, 4 boys and 7 girls are excellent singers; the rest of the students are just so-so. Ms. Nakamura has to assemble a cast for a production of an opera. She needs 2 boys and 3 girls with excellent voices for the lead roles, and then a chorus of 5 boys and 5 girls from among the remaining students, making sure that the excellent singers not chosen for the lead roles are part of the chorus. In how many different ways can such a cast be assembled?

NOW FOR SOMETHING COMPLETELY DIFFERENT

- Two people left at dawn, at the exact same time, one traveling from A to B, the other one from B to A. They travel at a constant speed, without stopping. They meet at noon. The first one arrives at B at 4 p.m., the second one arrives at A at 9 p.m.
- At what time was dawn that day?

THE 2, 3, 5 QUESTION

- How many numbers in the range 1-1000 are NOT divisible by 2,3 , or 5 ?

A TILING PROBLEM

- Leonardo wishes to tile a rectangular path that is 10 feet 120 inches long and 10inches wide. He wants to use 24 $10^{\prime \prime} \times 5^{\prime \prime}$ rectangular tiles, all of the same green color, to do this. In how many different ways can Leonardolay the tiles?

A TILING PROBLEM

- Leonardo wishes to tile a rectangular path that is 10 feet 120 inches long and 10inches wide. He wants to use 24 $10^{\prime \prime} \times 5^{\prime \prime}$ rectangular tiles, all of the same green color, to do this. In how many different ways can Leonardolay the tiles?
- He could start this way:

A TILING PROBLEM

- Leonardo wishes to tile a rectangular path that is 10 feet 120 inches long and 10inches wide. He wants to use 24 $10^{\prime \prime} \times 5^{\prime \prime}$ rectangular tiles, all of the same green color, to do this. In how many different ways can Leonardolay the tiles?
- He could start this way:
- Or this way:

A TILING PROBLEM

- Leonardo wishes to tile a rectangular path that is 10 feet 120 inches long and 10inches wide. He wants to use 24 $10^{\prime \prime} \times 5^{\prime \prime}$ rectangular tiles, all of the same green color, to do this. In how many different ways can Leonardolay the tiles?
- He could start this way:

Once you figure out the answer, here are two additional challenges: What is the

- Or this way:
 answer if the strip to be tiled is $15^{\prime \prime}$ wide? What if the tiles are of different colors? Say black and white. (To think about at home)

