MATH CIRCLE AT FAU

3/2/2024

HERON'S FORMULA

- Heron of Alexandria was a great mathematician and inventor.

HERON'S FORMULA

- Heron of Alexandria was a great mathematician and inventor.
- One of his discoveries is a formula for the area of a triangle.

HERON'S FORMULA

- Heron of Alexandria was a great mathematician and inventor.
- One of his discoveries is a formula for the area of a triangle.
- Do you know it? If not, you will learn it by paying attention.

A TRIANGULAR QUESTION

- The triangle in the picture has sides of length 17,10 , and 9.
- Find its area.

HERON'S FORMULA

Given a triangle of sides a, b, c

HERON'S FORMULA

Given a triangle of sides a, b, c Its semi-perimeter is $s=\frac{a+b+c}{2}$

HERON'S FORMULA

Given a triangle of sides a, b, c

Its semi-perimeter is $s=\frac{a+b+c}{2}$

The area is $A=\sqrt{s(s-a)(s-b)(s-c)}$

A TRIANGULAR QUESTION

$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

- The triangle in the picture has sides of length 17,10 , and 9.
- Find its area.

A TRIANGULAR QUESTION

$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

- The triangle in the picture has sides of length 17,10 , and 9.
- Find its area.

Solution: 36

INSCRIBED CIRCLES

15

The pictured triangle has sides of lengths 15,13 , and 4 . What is the radius of the inscribed circle. The next picture may suggest something.

INSCRIBED CIRCLES

15

The pictured triangle has sides of lengths 15,13 , and 4 . What is the radius of the inscribed circle. This picture may suggest something.

INSCRIBED CIRCLES - SOLUTION

15

The red lines divide the triangle into three triangles whose base are the sides, altitudes the radius of the inscribed cricle. So, if the radius is r, we get the formula

$$
A=s r=16 r
$$

INSCRIBED CIRCLES - SOLUTION

15

By Heron, $A=\sqrt{s(s-a)(s-b)(s-c)}=24$. So $16 r=24$. We get $r=\frac{24}{16}=\frac{3}{2}=1.5$

MORE INSCRIBED CIRCLES

- A triangle has altitudes of lengths 24,24 , and 20 .
- Explain why the triangle must be isosceles.
- Find the radius of the inscribed circle.

MORE INSCRIBED CIRCLES - SOLUTION

- A triangle has altitudes of lengths 24,24 , and 20.
- Explain why the triangle must be isosceles.
- Find the radius of the inscribed circle.
- Let a, b be the length of the sides at which the two equal altitudes of length 24 end. Then, if A is the area of the triangle

$$
\frac{1}{2}(24) a=A=1 / 2(24) b
$$

So $a=b$.

MORE INSCRIBED CIRCLES - SOLUTION

- A triangle has altitudes of lengths 24,24 , and 20.
- Explain why the triangle must be isosceles.
- Find the radius of the inscribed circle.
- Let c be the third side. From $A=\frac{1}{2}(24) a=\frac{1}{2}(20) c$ we get $c=\frac{6}{5} a$. A bit of Pythagoras shows $20^{2}+\left(\frac{c}{2}\right)^{2}=a^{2}$. We can solve to get $a=25, c=30$. We now calculate $A=\frac{1}{2}(20)(30)=300$, semi-perimeter $s=\frac{1}{2}(25+25+$

POINT IN A SQUARE

- A point P inside a square of side length a is at the same distance d from two consecutive vertices and from the side opposite the two vertices. What is $\frac{d}{a}$?

