Geometry Basics and More

Math Circle at FAU

October 14, 2023

Outline

(1) Triangles and their Angles
(2) Areas, Angles, and More

Basic Question

- In the triangle pictured above,
- The measure of the angle at B is 37°.
- The measure of the angle at C is 20°
- What is the measure of the angle at A ?

Angling for angles

- The figure below shows equilateral triangle $A E D$ inside square $A B C D$. The segment $A C$ is a diagonal of the square. What is the measure of $\angle E F C$?

Solution

Because the triangle $A E D$ is equilateral, all of its angles measure 60°. Since the segment $C A$ bisects a right angle, $\angle D A C$ measures 45°.

ANSWER: 75°

The two base angles of triangle $A F D$ add up to $45^{\circ}+60^{\circ}=105^{\circ}$, that leaves $\angle A F D$ no choice but to measure $180^{\circ}-105^{\circ}=75^{\circ}$. A very basic property of angles is that if two lines cross each other, then opposite angles are equal. Thus $\angle E F C$, and $\angle A F D$, being opposite angles created by the crossing of lines $A C$ and $D E$, must be equal. Since $\angle A F D$ measures 75°, so does $\angle E F C$.

Angling for Angles

In $\triangle A B C$ the point D is on $A C$ is such that $|A B|=|A D|$. If $\angle A B C-\angle A C B=30^{\circ}$, find $\angle C B D$. Justify your answer.

Solution

It may be convenient to give some names to the angles. It is traditional to use Greek letters for this purpose. Notice that because $\triangle A B D$ is isosceles, $\angle A B D=\angle A D B$. In the picture below I renamed the angles by

$$
\alpha=\angle A C B, \quad \beta=\angle C B D, \quad \gamma=\angle A B D=\angle A D B
$$

We can rephrase the problem by: Find β given that $(\beta+\gamma)-\alpha=30$. Using that the sum of two angles of a triangle equal the angle supplementary to the third angle, we see that $\alpha+\beta=\gamma$ or $\beta=\gamma-\alpha$. From the given equation, $\beta=30-(\gamma-\alpha)$. Thus

$$
2 \beta=(\gamma-\alpha)+30-(\gamma-\alpha)=30, \text { so } \beta=15^{\circ} .
$$

The Angle is in the Star

In the star shaped figure, the angle at A measures 25° and $\angle A F G=\angle A G F$.
Find $\angle B+\angle D$. (AMC 8)

Solution

- $\angle B+\angle D=180^{\circ}$ - red angle;
- blue angle $=180^{\circ}$ - red angle.
- Thus $\angle B+\angle D=$ blue angle.
- Because $\triangle A F G$ is isosceles, blue angle $=$ green angle.
- $180^{\circ}=25^{\circ}+$ blue angle + green angle $=25^{\circ}+2 \times$ blue angle .
- $\angle B+\angle D=$ blue angle $=\frac{1}{2}(180-25)=77.5^{\circ}$.

A Counting Intermezzo

- The integers $234,417,645$ share a curious property: All three digits are different and one of the three digits is the average of the other two. How many three-digit numbers have this property? That is, how many three digit numbers are composed of three distinct digits such that one digit is the average of the other two?

Solution

Let us first get all sets of three digits $\{a, b, c\}$ such that $c=(a+b) / 2, a<b$. For c to be a digit, either a, b are both even (10 choices) or both odd (also 10 choices). We have 20 choices in all. Each one of these choices can be arranged in 6 different ways. For example, from $(3,5,4)$ we get the integers

345, 354, 453, 435, 534, 543.
This gives a total of $6 \times 20=120$ integers. But some of these will have a leading 0! If $a=0$, then b is even, $c=b / 2$, so we have to disregard the integers $021,012,042,024,036,063,084,048$, eight integers in all. The final answer is that there are 112 such integers.

Who Wins?

- Lines m, n are parallel.
- Which triangle has the larger area? $\triangle A B C$ or $\triangle A B D$?

Isosceles Inquiries

- How many different isosceles triangles have integer side lengths and perimeter 23? (AMC 8)

Solution

If the sides of the triangle are a, a, b then a, b must satisfy $2 a>b$ and $2 a+b=23$. All choices of a, b satisfying these conditions work. We have

$$
23=2 a+b<4 a, \quad \text { so } \quad a>23 / 4=5.75
$$

Being an integer $a \geq 6$. next, since $b \geq 1$,

$$
23=2 a+b \geq 2 a+1, \quad \text { so } \quad 2 a \leq 22
$$

hence $a \leq 11$. So a is one of $6,7,8,9,10,11$ giving a total of 6 such triangles.
Now $2 a>b, 2 a+b=23$ implies $2 a \geq\lceil 23 / 2\rceil$, so $a \geq 6$. We also must have $a \leq 11$. But there are no other restrictions on a so that we have a total of 6 such triangles.

The Parallelogram Intruder

- Another AMC 8 problem.
- In triangle $A B C$ point E is on $A B$ with $|A E|=1,|E B|=2$. Point D is on $A C$ so that $D E \| B C$ and point F is on $B C$ so that $E F \| A C$. What is the ratio of the area of $C D E F$ to the area of $\triangle A B C$?

Solution

$\triangle E B F$ is similar to $\triangle A B C$. Because $|E B| /|A B|-2 / 3$, the constant of proportionality is $2 / 3$ and $[E B F]=(2 / 3)^{2}[A B C]$. Similarly, $\triangle A E D \sim \triangle A B C$; since $|A E| /|A B|=1 / 3$, we get $[A E D]=(1 / 3)^{2}[A B C]$. Then
$[A B F]+[A E D]=\left(\frac{4}{9}+\frac{1}{9}\right)[A B C] ; \quad$ that is, $\quad[A B F]+[A E D]=\frac{5}{9}[A B C]$.
Now

$$
[C D E F]=[A B C]-([A B F]+[A E D])=\frac{4}{9}[A B C]
$$

The answer is $4 / 9$.

