Triangles and their Angles Areas, Angles, and More

Geometry Basics and More

Math Circle at FAU

October 14, 2023

Triangles and their Angles Areas, Angles, and More

Basic Question

- In the triangle pictured above,
 - The measure of the angle at B is 37° .
 - The measure of the angle at C is 20°
- What is the measure of the angle at A?

Angling for angles

• The figure below shows equilateral triangle *AED* inside square *ABCD*. The segment *AC* is a diagonal of the square. What is the measure of ∠*EFC*?

Triangles and their Angles Areas, Angles, and More

Solution

Because the triangle AED is equilateral, all of its angles measure 60°. Since the segment CA bisects a right angle, $\angle DAC$ measures 45°.

The two base angles of triangle *AFD* add up to $45^{\circ} + 60^{\circ} = 105^{\circ}$, that leaves $\angle AFD$ no choice but to measure $180^{\circ} - 105^{\circ} = 75^{\circ}$. A very basic property of angles is that if two lines cross each other, then opposite angles are equal. Thus $\angle EFC$, and $\angle AFD$, being opposite angles created by the crossing of lines *AC* and *DE*, must be equal. Since $\angle AFD$ measures 75°, so does $\angle EFC$.

Angling for Angles

In $\triangle ABC$ the point *D* is on *AC* is such that |AB| = |AD|. If $\angle ABC - \angle ACB = 30^{\circ}$, find $\angle CBD$. Justify your answer.

Solution

It may be convenient to give some names to the angles. It is traditional to use Greek letters for this purpose. Notice that because $\triangle ABD$ is isosceles, $\angle ABD = \angle ADB$. In the picture below I renamed the angles by

 $\alpha = \angle ACB, \quad \beta = \angle CBD, \quad \gamma = \angle ABD = \angle ADB.$

We can rephrase the problem by: Find β given that $(\beta + \gamma) - \alpha = 30$. Using that the sum of two angles of a triangle equal the angle supplementary to the third angle, we see that $\alpha + \beta = \gamma$ or $\beta = \gamma - \alpha$. From the given equation, $\beta = 30 - (\gamma - \alpha)$. Thus

$$2\beta = (\gamma - \alpha) + 30 - (\gamma - \alpha) = 30$$
, so $\beta = 15^{\circ}$.

The Angle is in the Star

In the star shaped figure, the angle at A measures 25° and $\angle AFG = \angle AGF$. Find $\angle B + \angle D$. (AMC 8)

Solution

- $\angle B + \angle D = 180^{\circ}$ red angle;
- blue angle = 180° red angle.
- Thus $\angle B + \angle D =$ blue angle.
- Because $\triangle AFG$ is isosceles, blue angle = green angle.
- $180^{\circ} = 25^{\circ} + \text{ blue angle} + \text{green angle} = 25^{\circ} + 2 \times \text{ blue angle}.$
- $\angle B + \angle D =$ blue angle $= \frac{1}{2}(180 25) = 27.5^{\circ}$.

A Counting Intermezzo

• The integers 234, 417, 645 share a curious property: All three digits are different and one of the three digits is the average of the other two. How many three-digit numbers have this property? That is, how many three digit numbers are composed of three **distinct** digits such that one digit is the average of the other two?

Let us first get all sets of three digits $\{a, b, c\}$ such that c = (a+b)/2, a < b. For c to be a digit, either a, b are both even (10 choices) or both odd (also 10 choices). We have 20 choices in all. Each one of these choices can be arranged in 6 different ways. For example, from (3, 5, 4) we get the integers

345, 354, 453, 435, 534, 543.

This gives a total of $6 \times 20 = 120$ integers. But some of these will have a leading 0! If a = 0, then b is even, c = b/2, so we have to disregard the integers 021,012,042,024,036,063,084,048, eight integers in all. The final answer is that there are 112 such integers.

Who Wins?

- Lines *m*, *n* are parallel.
- Which triangle has the larger area? $\triangle ABC$ or $\triangle ABD$?

Isosceles Inquiries

 How many different isosceles triangles have integer side lengths and perimeter 23? (AMC 8)

Solution

If the sides of the triangle are a, a, b then a, b must satisfy 2a > band 2a + b = 23. All choices of a, b satisfying these conditions work. We have

$$23 = 2a + b < 4a$$
, so $a > 23/4 = 5.75$.

Being an integer $a \ge 6$. next, since $b \ge 1$,

$$23 = 2a + b \ge 2a + 1$$
, so $2a \le 22$,

hence $a \le 11$. So a is one of 6, 7, 8, 9, 10, 11 giving a total of 6 such triangles.

Now 2a > b, 2a + b = 23 implies $2a \ge \lceil 23/2 \rceil$, so $a \ge 6$. We also must have $a \le 11$. But there are no other restrictions on a so that we have a total of 6 such triangles.

The Parallelogram Intruder

- Another AMC 8 problem.
- In triangle ABC point E is on AB with |AE| = 1, |EB| = 2.
 Point D is on AC so that DE ||BC and point F is on BC so that EF ||AC. What is the ratio of the area of CDEF to the area of △ABC?

 $\triangle EBF$ is similar to $\triangle ABC$. Because |EB|/|AB| - 2/3, the constant of proportionality is 2/3 and $[EBF] = (2/3)^2[ABC]$. Similarly, $\triangle AED \sim \triangle ABC$; since |AE|/|AB| = 1/3, we get $[AED] = (1/3)^2[ABC]$. Then

$$[ABF]+[AED] = (\frac{4}{9}+\frac{1}{9})[ABC];$$
 that is, $[ABF]+[AED] = \frac{5}{9}[ABC].$

Now

$$[CDEF] = [ABC] - ([ABF] + [AED]) = \frac{4}{9}[ABC].$$

The answer is |4/9.