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Abstract
The analysis of the qualitative behavior of flows generated by ordinary differential

equations often requires quantitative information beyond numerical simulation which can
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signed to capture qualitative information using ideas from the Conley index theory. Specif-
ically we design an combinatorial multivalued approximation from a simplicial decompo-
sition of the phase space, which can be used to extract isolating blocks for isolated invari-
ant sets. These isolating blocks can be computed rigorously to provide computer-assisted
proofs. We also obtain local conditions on the underlying simplicial approximation that
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1 Introduction
A significant portion of both dynamical systems theory and numerical analysis has its roots
in the study of ordinary differential equations. However, due to the historical development of
these two disciplines a dichotomy has developed. On the numerical side the primary focus
has been on the approximation of individual orbits. In dynamics the central focus is on the
structure of invariant sets. In fact, one of the major accomplishments of dynamical systems
has been to demonstrate that the global dynamics of ordinary differential equations can only be
completely understood through an understanding of the behavior of sets of trajectories rather
than individual orbits. On the other hand, the high level of generality at which dynamical
systems is conducted makes it difficult to rigorously apply these ideas to particular equations.
For this one needs quantitative estimates that are often most easily obtained by numerical
approximation.

That the two approaches have different strengths is of course well known. Dynamicists
have for a long time used numerical simulations to investigate and demonstrate dynamical
properties of differential equations, and likewise, numerical analysts have begun to use the
ideas from dynamical systems to obtain a systematic understanding of the implications of
applying numerical schemes and algorithms (see [1, 5, 9] and references therein).

However, to the best of our knowledge there are no general computational schemes which
are designed explicitly to capture the qualitative dynamics of ordinary differential equations.
The purpose of this paper is to introduce such a scheme. Since the aim is very ambitious and
extends beyond our current abilities of implementation, we will begin with an introduction
describing how Conley’s approach to dynamical systems can provide a theoretical basis for
developing a unified computational approach to dynamical systems. Indeed, in [6] we showed
that Conley’s approach to dynamics can be made completely algorithmic for discrete dynam-
ical systems; certain issues remain unresolved for flows, but here we describe a framework in
which to address some of these issues and in which to develop algorithms for computations.

To be concrete, throughout this paper we will study a differential equation of the form

ẋ = f(x), x ∈ Rn (1)

which generates a flow
ϕ : R× Rn → Rn (2)

We are interested in approximating the dynamics on a polyhedron X ⊂ Rn.
From the dynamical systems point of view the object of interest is the structure of the

maximal invariant set in X ,

Inv(X,ϕ) := {x ∈ X | ϕ(R, x) ⊂ X} ,

and our goal is to develop computational methods to capture this information.
The first observation that needs to be made is that, because of local and global bifurcations,

invariant sets are not stable with respect to perturbations. Any numerical method introduces
errors and hence should be thought of as a perturbation to the system of interest. Therefore,
while it is possible to develop numerical methods to find particular orbits, such as fixed points
or periodic orbits, or particular structures, such as unstable manifolds or invariant tori, to study
general invariant sets we must proceed indirectly.

We begin with the following concept.
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Definition 1.1 A compact set N ⊂ Rn is an isolating neighborhood if Inv(N,ϕ) ⊂ intN .
An invariant set is an isolated invariant set if it is the maximal invariant set of an isolating
neighborhood.

The method we are developing here is intended to elucidate the structure of isolated invari-
ant sets. To do this we need to be able to decompose invariant sets in a robust manner. This
leads to the following idea.

Definition 1.2 Let ε, τ > 0. An (ε, τ)-chain from x to y in X is a finite sequence j = 1, . . . , J
of pairs

{(zj, tj) ⊂ X × [τ,∞) | x = z1, y = zJ , ‖ϕ(tj, zj)− zj+1‖ < ε, ϕ([0, tj], zj) ⊂ X} .

The (ε, τ)-chain recurrent set of X is

Rε,τ (X) := cl ({x ∈ X | ∃ an (ε, τ)− chain from x to x})

The chain recurrent set is
R(X) :=

⋂
ε>0

Rε,τ (X)

and as the notation suggests is independent of τ .

In this context Conley’s decomposition theorem [2] is as follows.

Theorem 1.3 Let Rj(X), j = 1, 2, . . ., denote the connected components of R(X). Then
there exists a continuous function V : Inv(X,ϕ) → [0, 1] such that

1. if x 6∈ R(X) and t > 0, then V (x) > V (ϕ(t, x)),

2. for each j = 1, 2, . . . there exists σj ∈ [0, 1] such that Rj ⊂ V −1(σj).

With numerical approximations in mind, we are more interested in Rε,τ (X) for a fixed
ε, τ > 0, than R(X). As implied in the decomposition theorem, the number of components
of the chain recurrent set is at most countable. However, it can be shown that only finitely
many components ofRε,τ (X) have a nonempty intersection withR(X) and hence a nonempty
invariant set. This leads to the following result.

Theorem 1.4 Let ε, τ > 0, and let Rj
ε,τ (X), j = 1, 2, . . . , J , denote the (finitely many) con-

nected components of Rε,τ (X) for which Inv(Rj
ε,τ (X), ϕ) 6= ∅. Then,

cl
(
Rj
ε,τ (X)

)
is an isolating neighborhood. Let M(j) := Inv(Rj

ε,τ (X), ϕ). Then there exists a continuous
function V : Inv(X,ϕ) → [0, 1] such that

1. if x 6∈ ∪Jj=1M(j) and t > 0, then V (x) > V (ϕ(t, x)),

2. for each j = 1, 2, . . . , J there exists σj ∈ [0, 1] such that M(j) ⊂ V −1(σj).
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The setsM(j) are called Morse sets and together form a Morse decomposition of Inv(X,ϕ).
The function V is called a Lyapunov function. Observe that if x ∈ Inv(X,ϕ) \∪Jj=1M(j) then
there exist two distinct Morse sets M and M ′ such that

ω(x, ϕ) :=
⋂
t≥0

cl(ϕ([t,∞), x) ⊂M

and
α(x, ϕ) :=

⋂
t≥0

cl(ϕ((−∞,−t], x) ⊂M ′

With this in mind, it is clear that we can also think of a Morse decomposition of Inv(X,ϕ)
as a finite collection of compact invariant sets indexed by a finite set J , i.e.

M(Inv(X,ϕ)) = {M(j) | j ∈ J }

with the added condition that there one can impose a strict partial order > on the elements of
J with the property that j > k implies that there is no element x ∈ X such that

ω(x, ϕ) ⊂M(j) and α(x, ϕ) ⊂M(k)

Such an ordering is called an admissible order.
Given a Morse decomposition, it is possible to produce a variety of additional isolated

invariant sets, as the following procedure indicates. Given an indexing set J and a partial
order >, I ⊂ J is an interval if p, q ∈ I and p > r > q implies that r ∈ I . The set of intervals
is denoted by I(J , >). An interval I is attracting if p ∈ I and p > q implies that q ∈ I . The
set of attracting intervals is denoted by A(J , >). For I ∈ I(J , >) define

M(I) :=

(⋃
p∈I

M(p)

)
∪

( ⋃
p,q∈I

C(M(p),M(q))

)

where
C(M(p),M(q)) := {x | ω(x) ⊂M(q), α(x) ⊂M(p)} .

It is left to the reader to check that M(I) is an isolated invariant set.
As will become clear in the next section, our computational scheme is designed to find a

Morse decomposition and a discrete approximation to the associated Lyapunov function. What
remains to be discussed is how one uses the approximation to understand the structure of the
invariant set. This is done via the Conley index which can be computed in terms of special
isolating neighborhoods.

Definition 1.5 An isolating neighborhood N is an isolating block if for every x ∈ ∂N , and
every ε > 0,

ϕ((−ε, ε), x) 6⊂ N. (3)

The immediate exit set for N is given by

N− := {x ∈ N | ∀ ε > 0, ϕ((0, ε), x) 6⊂ N } .
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If N is an isolating block, then the Conley index of Inv(N,ϕ) is given by

CH∗(N) := H∗(N,N
−)

the relative homology type of N and N−. In the next section it will be shown that our compu-
tational algorithm produces such index pairs (N,N−). There are a variety of results that use
the Conley index to deduce information about the structure of the dynamics of the invariant set
[7].

We have argued that the above approach to dynamics is well suited to numerical compu-
tations. However, a major distinction between the topological dynamics of the Conley index
theory and any computational method is that the latter is necessarily combinatorial in nature.
Therefore, we will now briefly repeat the above discussion but from a purely combinatorial
point of view.

With this in mind, we consider the phase space to be a finite set P, as opposed to a topo-
logical space. Furthermore, because this combinatorial system arises via an approximation,
the dynamics is generated by a multivalued map F on this finite set. More precisely, for ev-
ery P ∈ P, F(P ) ⊂ P. Note that we allow F(P ) = ∅. To emphasize the fact that we are
considering the dynamics of multivalued maps we will write

F : P−→→P.

A full trajectory through P ∈ P is an bi-infinite sequence {Pn | n ∈ Z} satisfying Pn+1 ∈
F(Pn) and P0 = P . The maximal invariant set of P under F is defined to be

Inv(P,F) := {P ∈ F | ∃ full trajectory through P}

Let A ⊂ P, then
F(A) :=

⋃
A∈A

F(A).

Inductively, Fj+1(P ) := F(Fj(P )) for every P ∈ P. We will let

Fω(P ) :=
∞⋃
j=0

Fj(P ).

Turning now to the dynamics of such a system. Let P ∈ P be recurrent if there exists
i > 0 such that

P ∈ Fi(P ).

We can define an equivalence relation on the set of recurrent elements by

P ∼ Q ⇔ ∃ i, j > 0 such that P ∈ Fi(Q) and Q ∈ Fj(P ) (4)

As will be described in the next section, in our approximation scheme, each equivalence class
(or recurrent component) will lead to an isolating neighborhood of a Morse set. To obtain an
approximate Lyapunov function, we can choose any function W : P → [0, 1] which satisfies
the following property.

Q ∈ F(P ) ⇒ W (P ) ≥ W (Q) and W (P ) = W (Q) ⇔ P ∼ Q. (5)
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In Section 2, using a polygonal tiling of the phase space, we define a combinatorial mul-
tivalued map which approximates the flow of a differential equation. We prove that, since the
multivalued map is an outer approximation of the flow, the recurrent components are isolating
blocks for Morse sets of a Morse decomposition. In Section 3, we give local conditions on
a triangulation which, if they can be satisfied, imply that the chain recurrent set of the flow
can be approximated arbitrarily closely. In Section 4, we show some results of numerical
computations.

2 Flow Transverse Polygonal Decompositions

2.1 Basic Definitions
We begin some definitions concerning simplicial complexes. While most of these definitions
are standard [8], we include them for the sake of completeness.

Let {a0, . . . , ak} be a geometrically independent set in Rn. The k-dimensional simplex K
spanned by a0, . . . , ak is

K :=

{
x ∈ Rn | x =

k∑
i=0

tiai, where
n∑
i=0

ti = 1 and ti ≥ 0

}

Any simplex spanned by a subset of {a0, . . . , ak} is called a face of K. The interior of K is
defined by

int(K) :=

{
x ∈ Rn | x =

k∑
i=0

tiai, where
k∑
i=0

ti = 1 and ti > 0

}
.

Notice that this does not necessarily correspond to the interior ofK with regard to the topology
inherited from Rn.

Definition 2.1 A simplicial complex K in Rn is a collection of simplicies in Rn satisfying:

1. Every face of a simplex of K is in K.

2. The intersection of any two simplicies of K is a face of each of them.

Set
K(l) := {K ∈ K | dimK = l}

The dimension of the simplicial complex K is determined by its highest dimensional simplex.
More precisely,

dimK := max
K∈K

dimK.

Observe that if L0 ⊂ K and L1 ⊂ K are simplicial complexes, then L0 ∩ L1 is also a
simplicial complex. For the purpose of this work we are only interested the following special
class of simplicial complexes.
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Definition 2.2 A simplicial complex K in Rn is full if every simplex in K is a face of an
n-dimensional simplex in K.

Given a full simplicial complex K in Rn, K ∈ K(n−1) is a free face if there exists a unique
L ∈ K(n) such that K is a face of L.

Definition 2.3 Let K be a full simplicial complex. Let |K| be the subset of Rn given by the
union of the simplicies in K. |K| is the polytope of K. A polygon is a subset of Rn that is the
polytope of a full simplicial complex.

Definition 2.4 Let P = |P| be a polygon. The boundary of P is

∂P :=
{
K ∈ P(n−1) | K is free

}
and the boundary of the polygon is

∂P := |∂P|.

Definition 2.5 Let X ⊂ Rn be the polytope of the full finite simplicial complex K. A polygo-
nal decomposition of X consists of a finite collection of polygons {P1, . . . PN} such that each
polygon Pi is the polytope of a simplicial complex Pi ⊂ K,

X =
N⋃
i=1

Pi,

and dim(Pi ∩ Pj) ≤ n− 1 for all i 6= j.

2.2 Flow Transverse Polygonal Decompositions
We are interested in the relationship between polygons and the vector field of our differential
equation (1) restricted to a polygonal region X . Throughout this section X = |K| where K
is a full finite simplicial complex. Our first step will be to use K to construct a polygonal
decomposition of X which is compatible with the vector field f .

Given K ∈ K(n−1), let ν(K) denote one of the two unit normal vectors to K. To determine
a unique choice of ν(K), let L ∈ K(n) such that K is a face of L. Then, νL(K) is defined to
be the inward unit normal of K with respect to L.

Definition 2.6 K ∈ K(n−1) is a flow transverse face, if

ν(K) · f(x) 6= 0

for every x ∈ K. Let P = |P| be a polygon where P ⊂ K. P is a flow transverse polygon if
every K ∈ ∂P is flow transverse.

Let P = |P| be a polygon. Observe that if K ∈ ∂P , then there exists a unique KP ∈ P(n)

such that K is face of KP . K is an exit face of P if

νKP
(K) · f(x) < 0 ∀x ∈ K.

Define
P− := {K ∈ ∂P | K is an exit face of P} (6)

The following result follows directly from the definition of flow transversality and the fact
that simplices are compact.
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Lemma 2.7 If P is a flow transverse polygon, then f(x) 6= 0 for all x ∈ ∂P .

Definition 2.8 Let P = {P1, . . . , PN} be a polygonal decomposition of X . Let Pi = |Pi|.
P is a flow transverse polygonal decomposition of X if the following condition is satisfied.
If Pi is not flow transverse and K ∈ ∂Pi such that ν(K) · f(x) = 0 for some x ∈ K, then
|K| ⊂ ∂X .

Observe that in the above definition, every polygon is flow transverse, except perhaps those
which share an (n − 1)-dimensional simplex with the boundary of X . Furthermore, these
polygons which intersect the boundary are also flow transverse with respect to all their (n−1)-
dimensional faces except possibly those that lie on the boundary of X . The motivation for this
definition is that while we can control the structure of the polygons within X , the boundary of
X is fixed and therefore for such points we have no control on the flow transversality or lack
thereof.

Definition 2.9 Starting with any simplicial complex K and any vector field f there is a min-
imal flow transverse polygonal decomposition of X denoted by P(K, f) which is defined as
follows. Let Ki, Kj ∈ K(n) such that Ki ∩Kj = L ∈ K(n−1). Set Ki ∼ Kj if ν(L) · f(x) = 0
for some x ∈ L or if i = j. Extend this relation by transitivity. Then ∼ is an equivalence
relation on K. Define P(K, f) = {P1, . . . , PN} to be the polygons defined by the equivalence
classes. We shall let Pi ⊂ K be the simplicial complex such that Pi = |Pi|.

Our goal is to use P(K, f) to approximate the dynamics of the flow ϕ restricted to X . To
do this we will use the following definitions.

Definition 2.10 Two distinct polygons Pi, Pj ∈ P(K, f) are adjacent if they share an (n−1)-
dimensional simplex, i.e. if

∂Pi ∩ ∂Pj ∩ K(n−1) 6= ∅.

Definition 2.11 Let Pi, Pj ∈ P(K, f) be adjacent polygons and let K ∈ ∂Pi∩∂Pj ⊂ K(n−1).
Pi is in the image of Pj if

νPi
(K) · f(x) > 0

for x ∈ K.

Definition 2.12 A polygon P is (ε, τ)-recurrent if there exists x ∈ P such that Bε(ϕ(τ, x)) ∩
P 6= ∅. P is non-recurrent if it is not recurrent.

The flow induced multivalued map Fε,τ : P(K, f)−→→P(K, f) is defined as follows.

Pi ∈ Fε,τ (Pi) if and only if Pi is (ε, τ)−recurrent

and
Pj ∈ Fε,τ (Pi) for j 6= i if and only if Pj is in the image of Pi.

In what follows, we will assume that ε and τ are fixed, and so to simplify the notation we will
write F = Fε,τ .
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2.3 Local Relation between F and ϕ
In this section we investigate the relationship between F : P(K, f)−→→P(K, f) and the flow ϕ
generated by the differential equation (1).

As was indicated in the introduction, we will not concern ourselves with the dynamics
within the polygons Pi ∈ P(K, f). However, we are interested in the dynamics on the bound-
ary points of the polygons. As above, let Pi = |Pi| and let

Q =
N⋃
i=1

∂Pi.

Consider x0 ∈ intK where K ∈ ∂Pi ⊂ Q(n−1). Assume, furthermore, that K ∈ Pi ∩ Pj .
Then, Pi ∈ F(Pj) if and only if every point x ∈ Bρ(x0) ∩ K, for ρ sufficiently small, is
immediately leaving Pj and immediately entering Pi under the flow ϕ.

So now consider, x0 ∈ intK where K ∈ Q(l) for some 0 ≤ l ≤ n − 2. Since the
polygons Pi need not be convex in general, the relationship between the dynamics of F and
ϕ in a neighborhood of x0 is more delicate. Again, consider a small ball Bρ(x0). For the
rest of this section we will assume that ρ is chosen small enough so that for any L ∈ K if
L ∩ Bρ(x0) 6= ∅ then x0 ∈ L. For notational convenience, we will take x0 = 0; in the general
case the hyperplanes H discussed below should be replaced by affine spaces x0 +H .

By flow transversality, K and f(x0) determine an (l + 1)-dimensional hyperplane W .
Let H∗ denote the span of W⊥ and f(x0), which implies codimH∗ = l. Consider any
L ∈ star(x0)∩K(n−1), which necessarily contains K, and let H denote the codimension-1 hy-
perplane determined by L. ThenH is transverse toH∗ since f(x0) /∈ H by flow transversality.
Thus codim(H ∩ H∗) = l + 1. Also, for Sρ = ∂Bρ(x0) define the (n − l − 1)-dimensional
sphere

S∗ρ := Sρ ∩H∗.

Slicing the simplicial complex with the hyperplane H∗ and looking locally in Bρ(x0), we have
the following lemma.

Lemma 2.13 Let x0 ∈ int(K) for some K ∈ Q(l) where 0 ≤ l ≤ n−2. Then, the (n− l−1)-
dimensional cellular complex

S∗ρ :=
{
K ∩ S∗ρ | K ∈ star(x0) ∩ K(n)

}
is a polygonal decomposition of the sphere S∗ρ which is in 1-1 correspondence with star(x0)∩
K(n).

To understand the dynamics through the complex inBρ(x0) consider the projection of f(x)
onto the tangent space at x of Sρ. This is given by

fρ(x) = f(x)− (f(x) · r(x))r(x)

where r(x) = (x− x0)/ρ. Notice that ‖r(x)‖ = 1.
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Observe that for ρ small enough, the flow in Bρ(x0) is nearly parallel. For the constant
(and hence parallel) flow, ẋ = f(x0), the projected vector field f(x0)− (f(x0) · r(x))r(x) has
exactly two zeroes which are located at the poles x0 ∓ ρf(x0)/‖f(x0)‖ where the function

V (x) = −r(x) · f(x0)

attains its maximum and minimum values of ±‖f(x0)‖ on Sρ. Furthermore, V (x) is a Lya-
punov function on Sρ. The following lemma formalizes how these properties are preserved for
fρ on Sρ with ρ small.

Lemma 2.14 Let x0 ∈ Q(l) where 0 ≤ l ≤ n − 2. For every δ > 0, there exists ρ0 > 0 such
that for 0 < ρ < ρ0:

1. if x ∈ Sρ is a zero of fρ, then ‖f(x0)‖ − |V (x)| < δ, and

2. if x ∈ Sρ \ {x : ‖f(x0)‖ − |V (x)| < max{δ, 2δ/‖f(x0)‖}}, then

V̇ (x) = −fρ(x) · f(x0) ≤ −δ < 0.

Proof: First choose α > 0 so that ‖f(x0)‖ − |y| < δ whenever ‖f(x0)‖2 − y2 < α and
|y| ≤ ‖f(x0)‖. By continuity, ρ0 can be chosen so that

‖f(x)− f(x0)‖ < min{α/2‖f(x0)‖, δ}

and

|f(x) · r(x)− f(x0) · r(x)| ≤ ‖f(x)− f(x0)‖ ‖r(x)‖ < min{α/2‖f(x0)‖, δ}

for all ρ < ρ0. If x is a zero of fρ, then f(x) = (f(x) · r(x))r(x) which implies

‖(f(x0) · r(x))r(x)− f(x0)‖ ≤ ‖(f(x0) · r(x))r(x)− (f(x) · r(x))r(x)‖
+‖f(x)− f(x0)‖ < α/‖f(x0)‖.

Taking the inner product with f(x0) gives ‖f(x0)‖2− (r(x) ·f(x0))
2 < α which by the choice

of α implies (1).
Moreover,

−fρ(x) · f(x0) = −f(x) · f(x0) + (f(x) · r(x))(f(x0) · r(x)).

Again ‖f(x)−f(x0)‖ < δ implies−f(x) ·f(x0) < −‖f(x0)‖2 + δ, and |f(x) · r(x)−f(x0) ·
r(x)| < δ implies |f(x) · r(x)| < |f(x0) · r(x)|+ δ. Hence

|f(x) · r(x)| · |f(x0) · r(x)| < (|f(x0) · r(x)|+ δ)|f(x0) · r(x)|
< (‖f(x0)‖ − δ + δ)(‖f(x0)‖ − δ∗)

< ‖f(x0)‖2 − 2δ

where the second inequality follows from

x ∈ Sρ\{x : ‖f(x0)‖ − |V (x)| < max{δ, 2δ/‖f(x0)‖}}.

Therefore −fρ(x) · f(x0) < −‖f(x0)‖2 + δ + ‖f(x0)‖2 − 2δ = −δ, which proves (2).

The last statement says that V is a Lyapunov function for the flow ẋ = fρ(x) on Sρ\{x :
‖f(x0)‖ − |V (x)| < max{δ, 2δ/‖f(x0)‖}}.
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Lemma 2.15 Let x0 ∈ int(K) for some K ∈ Q(l) where 0 ≤ l ≤ n− 2. There exists a ρ1 > 0
such that for all 0 < ρ < ρ1 we have

1. S∗ρ is transverse to the flow f ∗ρ on S∗ρ ,

2. the flow induced multivalued map F∗
ρ : S∗ρ −→→S∗ρ is locally equivalent to the flow induced

map F.

Proof: Let f ∗(x) = PH∗f(x) be the projection of f(x) onto the hyperplaneH∗. Since f(x0) ∈
H∗, we can apply Lemma 2.14 to the vector field f ∗ on H∗ and consider the vector field f ∗ρ
on S∗ρ . Any (n− l − 2)-dimensional face L∗ in S∗ρ is the intersection of S∗ρ with a hyperplane
H ∩H∗ where H is determined by a cell in K(n−1) ∩ star(x0) as described above.

For any point x ∈ L∗, the vector field f ∗(x) /∈ H by flow transversality, and hence f ∗ρ (x) =
f ∗(x)− (f ∗(x) · r(x))r(x) /∈ H since r(x) ∈ H .

Definition 2.16 Let x0 ∈ intK where K ∈ ∂Pi. Let

L :=
{
L ∈ P(n)

i | K is a face of L
}
.

Pi is field enclosing for f at x0 if
f(x0) · ν(L) > 0

for every L ∈ L where ν(L) is the inward unit normal vector to L with respect to Pi.

Lemma 2.17 Let x0 ∈ intK ∩ intX where K ∈ Q(l) for some 0 ≤ l ≤ n − 2. Then there
exist unique elements A and R in P(K, f) such that A is field-enclosing for f at x0 and R is
field enclosing for −f at x0. Moreover, for every Pi ∈ P(K, f) such that Pi ∩ Bρ(x0) 6= ∅,
A ∈ Fω(Pi) and Pi ∈ Fω(R).

Proof: The existence of the polyhedraA andR with the stated enclosure properties follows
immediately from flow transversality. The nontrivial assertion of the lemma is thatA ∈ Fω(Pi)
for every Pi ∈ P(K, f) such that Pi ∩Bρ(x0) 6= ∅.

Then applying that result to the backward flow, given by the vector field −f , and noting
that P ∈ F ω(Q) iff Q ∈ (−F )ω(P ), we obtain P ∈ F ω(R) for every P ∩Bρ(x) 6= ∅.

First, we choose ρ > 0 small enough so that Lemma 2.15 applies. Let R∗ = R ∩ S∗ρ and
A∗ = A ∩ S∗ρ . For any ρ > 0, R∗ and A∗ contain sectors around ±f(x0) of fixed angular size,
i.e. by choosing δ small enough, {x ∈ S∗ρ : ‖f ∗(x0)‖ − |V (x)| > δ} ⊂ int(R∗ ∪ A∗). Then,
by Lemma 2.14, we have that V (x) is a Lyapunov function on S∗ρ\ int(R∗ ∪ A∗).

Step 1: If σ ∈ S∗ρ\{A∗}, then minx∈σ V (x) is attained at a vertex of σ.

The set Hmin = {x ∈ H∗ : V (x) = minx∈σ V (x)} is a (n − l − 1)-dimensional affine
space of the form xmin + span{f(x0)}⊥. Furthermore, Hmin is tangent to the sphere S∗ρ only
at the global minimum of V which is attained at the pole in A∗, and thus for σ 6= A∗, we have
that Hmin intersects S∗ρ transversely.

If Hmin ∩ int(σ) 6= ∅ then σ must contain points for which V is less than minx∈σ V (x),
and hence Hmin ∩ σ ⊂ ∂σ. The set ∂σ is composed of the intersection of S∗ρ with (n− l− 1)-
dimensional hyperplanes. Since Hmin ∩ int(σ) 6= ∅, Hmin must contain a complete face of σ
and hence a vertex.
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Step 2: If σ ∈ S∗ρ\{A∗}, then there exists ψ ∈ (F∗
ρ)
ω(σ) such that minx∈ψ V (x)

< minx∈σ V (x).

Let v ∈ S∗ρ be a vertex at which V (x) attains its minimum in σ. Since V (x) decreases in
the direction f ∗ρ (v), the element σ cannot be field-enclosing at v. By flow transversality, there
exists ψ1 ∈ F∗

ρ(σ) such that v ∈ ψ1. If minx∈ψ1 V (x) < minx∈σ V (x), then we have proven
the claim, otherwise minx∈ψ1 V (x) = minx∈σ V (x), which is again attained at v. In this case,
ψ1 cannot be field-enclosing at v, and we can repeat the previous step to obtain ψ2 ∈ F∗

ρ(ψ1),
which implies ψ2 ∈ (F∗

ρ)
2(σ). Since there are only finitely many elements in S∗ρ , this process

must terminate and yield ψ ∈ (F∗
ρ)
ω(σ) such that minx∈ψ V (x) < minx∈σ V (x).

Step 3: If σ ∈ S∗ρ\{A∗}, then A∗ ∈ (F∗
ρ)
ω(σ).

If σ = A∗, then A∗ ∈ F ω(A∗), and hence we assume that σ 6= A∗. From Step 2 we can
find ψ1 ∈ (F∗

ρ)
ω(σ) such that minx∈ψ1 V (x) < minx∈σ V (x). If ψ1 6= A∗, then we can repeat

the previous step to obtain ψ2 ∈ F∗
ρ(ψ1), which implies ψ2 ∈ (F∗

ρ)
2(σ), and minx∈ψ2 V (x) <

minx∈ψ1 V (x). Since there are only finitely many elements in S∗ρ , this process must terminate,
at which point A∗ = ψ ∈ (F∗

ρ)
ω(σ).

Step 3 immediately implies the desired result by the correspondences between the maps F
and F∗

ρ and the sets star(x0) ∩ K(n) and S∗ρ in Lemma 2.15.

2.4 Global Relation between F and ϕ
Recall that we are studying the dynamics of (1) restricted to the polygon X where X = |K|.
As was indicated in Section 2.2 this gives rise to the polygonal decomposition P(K, f) and
the induced multivalued map F : P(K, f)−→→P(K, f). We are now in a position to compare
the global dynamics of ϕ with that of F.

First we observe that, given a typical point x ∈ X , there is no reason to believe that its
entire forward trajectory lies in X . Therefore, define

τx := max {t ≥ 0 | ϕ([0, t], x) ⊂ X}

The first theorem indicates that forward trajectories of F provide an outerbound for trajectories
of ϕ.

Theorem 2.18 Let x0 ∈ X . Let P ∈ P(K, f) such that x0 ∈ P . Then

ϕ(x0, (0, τx0)) ⊂ int(|Fω(P )|)

Proof: We will show that for any t ∈ [0, τx0 ], if ϕ(x0, t) ∈ |Fω(P )| ∩ int(X), then there is
an ε > 0 such that t + ε ∈ [0, τx0 ] and ϕ(x0, [t, t + ε]) ⊂ |Fω(P )|. The result then follows by
considering τ = inf{t ∈ [0, τx0 ] | ϕ(x0, t) 6∈ |Fω(P )|}. If τ exists, then ϕ(x0, τ) ∈ ∂X .

To prove the above claim, we consider three cases. First, if ϕ(x0, t) ∈ int(P ′) for some
P ′ ∈ Fω(P ), then the desired ε exists since int(P ′) is open. Second, if ϕ(x0, t) ∈ int(K)
for some σ ∈ Q(n−1), then by flow transversality, there exist elements Pi and Pj in P(K, f)
such that K ∈ ∂Pi ∩ ∂Pj and Pi ∈ F(Pj). By definition, there exists ε > 0 such that
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ϕ(x0, [t, t + ε]) ⊂ Pi. We are assuming that ϕ(x0, t) ∈ |Fω(P )| so that either Pi ∈ Fω(P ) or
Pj ∈ Fω(P ), which implies Pi ∈ Fω(P ).

The remaining case is that ϕ(x0, t) ∈ int(K) for some K ∈ Ql with 0 ≤ l ≤ n − 2.
We are assuming that ϕ(x0, t) ∈ |Fω(P )|, which implies that ϕ(x0, t) ∈ P ′ for some P ′ such
that K ⊂ P ′ and K ∈ star(ϕ(x0, t)) ∩ Fω(P ). Let A ∈ P(K, f) be the element which is
field-enclosing at ϕ(x0, t). Then, there exists ε > 0 such that ϕ(x0, [t, t+ ε]) ⊂ A. By Lemma
2.17, we have A ∈ Fω(P ′) ⊂ Fω(P ), which completes the proof.

We need to worry about internal tangencies. To eliminate these we introduce the following
definition.

Definition 2.19 Let x0 ∈ ∂X such that X ∩ Bρ(x0) is not convex for arbitrarily small ρ > 0.
Then, x0 ∈ K1 ∩K2 where Ki ∈ ∂P are distinct (n− 1)-dimensional simplexes. Assume that
Ki is a face of Li ∈ Pi (it is possible that P1 = P2). Then x0 is a re-entry point if

νL1(K1) · f(x0) > 0 and νL2(K2) · f(x0) < 0.

A collection of polygons Q ⊂ P(K, f) is re-entry free if

1. every (n− 1)-dimensional simplex in ∂X ∩Q is flow transverse, and

2. Q contains no re-entry points.

Theorem 2.20 Let Q ⊂ P(K, f) be an equivalence class (4) of the recurrent set of F. If Q is
re-entry free, then (Q,Q−) is an index pair.

Proof: To prove that (Q,Q−) is an index pair it needs to be shown that condition (3) is satisfied
for every x ∈ ∂Q. The proof is by contradiction. So assume there exists x0 ∈ ∂Q and an ε > 0
such that

ϕ((−ε, ε), x0) ⊂ Q. (7)

The assumption that Q is re-entry free implies that x0 6∈ ∂X . By construction the (n−1)-faces
of each Qi are flow transverse, and therefore we can further assume that x0 ∈ |Q(j)| for some
0 ≤ j ≤ n− 2.

Combining (7) and Lemma 2.17 we can conclude that there exist unique (though not neces-
sarily distinct) polygons A and R such that if Pi ∈ P(K, f) and x0 ∈ Pi, then A ∈ Fω(Pi) and
Pi ∈ Fω(R). However, A and R are related by (4). Thus every Pi containing x0 is related to A
and R by (4), and hence every such Pi ∈ Q. This contradicts the assumption that x0 ∈ ∂Q.

A similar proof leads to the next corollary. For the remainder of this section let

S := Inv(P(K, f),F)

Corollary 2.21 If S is re-entry free, then Inv(X,ϕ) is an isolated invariant set.

Observe that it follows from the proof of Theorem 2.20 that any equivalence class in the
recurrent set of F which does not touch the boundary of X is automatically re-entry free.

Let {Q(j) | j ∈ J } be the set of equivalence classes of the recurrent set of F and let
W : P(K, f) → [0, 1] be an approximate Lyapunov function satisfying (5). Let > be a partial
ordering of J defined by

W (Q(j)) > W (Q(k)) ⇒ j > k

13



Theorem 2.22 Let M(j) := Inv(Q(j), ϕ). Then

{M(j) | j ∈ J }

is a Morse decomposition of Inv(X,ϕ) with admissible order >.

The following lemma will be used in the proof of this theorem.

Lemma 2.23 If x ∈ Inv(X,ϕ), then ω(x) ⊂M(q) and α(x) ⊂M(p) for some q ∈ J .

Proof: We shall prove the first case since the second is similar. The proof is by contradiction.
Assume that there exists P ∈ P(K, f) such that ω(x) ∩ P 6= ∅ and P 6∈ Q(i) for all i ∈ J .
This latter condition implies that P 6∈ Fn(P ) for all n ≥ 1. Let y ∈ P ∩ ω(x) and let {tm} be
an increasing sequence of positive times such that limm→∞ ϕ(tm, x) = y.

By Theorem 2.18 and the fact that P 6∈ Fn(P ) for all n ≥ 1 we can assume that ϕ(tm, x) 6∈
P for all m. This implies that y ∈ ∂P . Assume that there exists an ε > 0 for which
ϕ((−ε, 0], y) ⊂ P . Since P is flow transverse ϕ((−ε, 0), y) ⊂ int(P ). This would imply
that we could choose a sequence of tm such that ϕ(tm, x) ∈ P a contradiction. A similar
argument applies to the case that ϕ([0, ε), y) ⊂ P . Therefore, we can conclude that there
exists ε > 0 such that ϕ((−ε, ε), y) ∩ P = y. This in turn implies that y ∈ Q(k) for some
0 ≤ k ≤ n− 2.

We can now conclude the existence of A,R ∈ P(K, f) as in Lemma 2.17. Since

ϕ((−ε, 0], y) ⊂ R and ϕ([0, ε), y) ⊂ A,

the previous arguments imply thatA andR belong to some Q(j). But the fact thatA ∈ F ω(P )
and P ∈ F ω(R) implies that P ∈ Q(j), the desired contradiction.

Proof of Theorem 2.22: Let x ∈ Inv(X,ϕ). If ϕ(R, x) ⊂ Q(j) for some j ∈ J , then
x ∈ M(j). Now consider x ∈ Inv(X,ϕ) \ ∪M(j). By Lemma 2.23, ω(x) ⊂ M(q) and
α(x) ⊂ M(p) for some p, q ∈ J . We need to show that p > q. By definition, there exists
P ∈ P(K, f) and s such that P 6∈ Q(q) and ϕ(s, x) ∈ P . By Theorem 2.18, Q(q) ⊂ Fω(P ).
However, P 6∈ Fω(Q(q)). Thus, W (P ) > W (R) for any R ∈ Q(q). Clearly, if Q ∈ Q(p)
then W (Q) ≥ W (P ). Thus, p > q.

Given that we have a Morse decomposition, the next step is to produce an index filtration.
From an index filtration the Conley indices of all Morse sets associated with the Morse decom-
position can be computed. However, before we can proceed several definitions are needed.

Definition 2.24 Given a Morse decomposition {M(j) | j ∈ (J , >)} an index filtration is a
collection of compact sets

N := {N(I) | I ∈ A(J , >)}
satisfying the following two conditions:

1. for each I ∈ A(J , >), (N(I), N(∅)) is an index pair for M(I).

2. for each I, J ∈ A(J , >),

N(I ∩ J) = N(I) ∩N(J) and N(I ∪ J) = N(I) ∪N(J).
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Returning to the polygonal setting of this section define

N(∅) := S−.

For I ∈ A(J , >) define

N(I) :=

(
S ∩

⋃
j∈I

Fω(Q(j))

)
∪N(∅).

Theorem 2.25 If S is re-entry free, then

N := {N(I) | I ∈ A(J , >)}

is an index filtration for the Morse decomposition {M(j) | j ∈ J }

Proof: The second condition of Definition 2.24 is obviously satisfied, therefore we only need
consider the first.

Given x ∈ ∂N(I) we need to show that for every ε > 0, ϕ((−ε, ε), x) 6⊂ N(I). The proof
is by contradiction. So assume x0 ∈ ∂N(I) and ϕ((−ε, ε), x0) ⊂ N(I). Since S is re-entry
free, x0 6∈ ∂X .

By Lemma 2.17 there existsA,R ∈ P(K, f) with the property that for every Pi ∈ P(K, f)
such that x0 ∈ Pi, Pi ∈ Fω(R) and ϕ((−ε, ε), x0) ⊂ A ∪ R. The last condition implies that
R ∈ N(I). By definition, R ∈ N(I) implies that Fω(R) ⊂ N(I). Therefore, if x0 ∈ Pi ∈
P(K, f) then Pi ∈ N(I). However, this contradicts the assumption that x0 ∈ ∂N(I).

3 Polygonal Approximation of Chain Recurrence
In the previous section we showed that given any triangulation one can recover a Morse de-
composition and an associated index filtration. However, no assumptions were made on the
triangulation, and hence the approximation can be arbitrarily bad. In fact, in the worst case
it is possible that |P(K, f)| = X . In this section we will give a local condition on the trian-
gulation which guarantees that the global dynamics of the multivalued map on polygons is a
good approximation to the global dynamics of the flow. Our goal is to show that for any ε > 0
there is a numerically computable, local orientation condition which, when imposed on each
simplex, implies that the resulting Morse decomposition is at least as fine as the decomposition
by ε-chain recurrent components given in Theorem 1.4.

In this section, we will assume that K is a full, finite simplicial complex for which |K| =
X contains no equilibrium points of the flow. In this situation, the trajectories of x′ =
f(x)/‖f(x)‖ are reparametrizations of the trajectories of x′ = f(x) by arclength, which does
not affect the global dynamics. Hence without loss of generality, the vector field f will be
assumed to be a unit vector field.
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3.1 Local Orientation
For convenience, we will use the terminology σ is a facet of K to describe the situation that
K ∈ K(n) is a highest dimensional simplex and σ is an (n − 1)-dimensional face in ∂K. If σ
is a facet of K, then there is one vertex v of K which is not a vertex of σ, and we will find it
convenient to denote K = [σ, v]. It will be important to study the direction of the vector field
on the facets of simplices which leads to the following definitions.

Definition 3.1 A facet σ of K is an infacet if there exists x ∈ σ such that f(x) · νK(σ) ≥ 0.

Definition 3.2 For δ > 0, a simplex K ∈ K(n) is δ-oriented with respect to the unit vector
field f if each infacet σ of K satisfies the property that if K = [σ, v], then there exists y ∈ σ
such that (v − y) · f(y) ≥ δ‖v − y‖. A simplicial complex K is δ-oriented if each K ∈ K(n)

is δ-oriented.

Many of the geometric estimates required in this section, including the above definition,
can be given in terms of cones, which will be denoted as follows. For v ∈ Sn−1 the (positive)
cone with axis along v and angle cos−1(α) is C(v, α) = {u ∈ Rn : u · v ≥ α‖u‖}, and for
x0 ∈ Rn the affine cone is given by C(x0, v, α) = x0 + C(v, α). Thus a simplex is δ-oriented
if for every infacet σ with opposite vertex v, there exists y ∈ σ such that v − y ∈ C(f(y), δ).

We begin with two technical lemmas about cones.

Lemma 3.3 Let f, g, h ∈ Sn−1. Let 1 ≥ ω > λ > 0 and 1 ≥ δ ≥ ∆(ω, λ) := ωλ +√
(1− λ2)(1− ω2). If f ∈ C(g, ω) and h ∈ C(f, δ), then h ∈ C(g, λ).

Proof: The cone assumptions amount to f · g ≥ ω and h · f ≥ δ then h · g ≥ λ. Without loss
of generality we can assume f = e1 by applying a rotation. Then we have that

f · g = g1 = cos(θ1) ≥ ω
h · f = h1 = cos(θ3) ≥ δ

and let h · g = cos(θ2). It follows that∑n
i=2 g

2
i = 1− g2

1 = sin2(θ1) ≤ 1− ω2∑n
i=2 h

2
i = 1− h2

1 = sin2(θ3) ≤ 1− δ2∑n
i=1 higi = h1g1 +

∑n
i=2 higi = cos(θ2) ≥ h1g1 − |

∑n
i=2 higi|.

By Cauchy-Schwartz we get

cos(θ2) ≥ h1g1 − (
n∑
i=2

h2
i )

1/2(
n∑
i=2

g2
i )

1/2 = cos(θ1) cos(θ3)− sin(θ1) sin(θ3)

≥ ωδ −
√

1− ω2
√

1− δ2

Now if we impose the condition

ωδ −
√

1− ω2
√

1− δ2 ≥ λ, (8)

then cos(θ2) ≥ λ as we wish. Solving the inequality (8) for δ leads to the inequality

1 ≥ δ ≥ ωλ+
√

(1− λ2)(1− ω2).
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Lemma 3.4 Let 0 < Λ < λ < 1 and g ∈ Sn−1. For any unit vectors µ ∈ C(g,Λ) and
ν ∈ C(g, λ),

‖µ− ν‖ ≤
√

2(1− Λλ+
√

1− Λ2
√

1− λ2)1/2. (9)

Proof: Let θ1 = cos−1(Λ) and θ2 = cos−1(λ). Then the largest angle between any vector in
the cone C(g,Λ) and any vector in the cone C(g, λ) is θ1+θ2. Therefore µ·ν ≥ cos(θ1+θ2) =
Λλ−

√
1− Λ2

√
1− λ2 . Thus ‖µ− ν‖2 = 2− 2µ · ν ≤ 2(1− Λλ−

√
1− Λ2

√
1− λ2).

The next lemma implies that on a complex oriented to a vector field which lies in a cone,
the multivalued map also respects cones, i.e. if a simplex lies in a suitable cone, then so must
the entire polygon which contains it and the entire forward image of that polygon.

Lemma 3.5 Let ω, λ, δ > 0 satisfy 1 ≥ δ ≥ ∆(ω, λ) and 1 ≥ ω > λ. Suppose K is a δ-
oriented complex with respect to the vector field f which maps into a cone C(g, ω) for some
g ∈ Sn−1. Suppose K,L ∈ K(n) and K ∩L = σ is an infacet of L. If K ⊂ C(p, g, λ) for some
p ∈ Rn then L ⊂ C(p, g, λ).

Proof: Let ζ = C(p, g, λ), L = [σ, v] and ν = νL(σ). Since σ is a facet of K, it lies entirely
in the cone ζ . Moreover, since L is δ-oriented, there exists y ∈ σ such that

(v − y) · f(y) ≥ δ‖v − y‖,

i.e. (v−y) ∈ C(f(y), δ). We have also assumed that f(y) ∈ C(g, ω). These relations together
with the conditions on ω, δ, and λ imply by Lemma 3.3 that v − y ∈ C(g, λ).

Since y ∈ K ⊂ ζ and ζ is a cone, the half line given by

y + t
(v − y)

‖v − y‖

is contained in ζ for all t ≥ 0. Choosing t = ‖v− y‖ implies v ∈ ζ . Since L is the convex hull
of σ and v, both of which are contained in ζ , we have L ⊂ ζ .

Corollary 3.6 Let ω, λ, δ > 0 satisfy 1 ≥ δ ≥ ∆(ω, λ) and 1 ≥ ω > λ. Suppose K is a
δ-oriented complex with respect to the vector field f which maps into a cone C(g, ω) for some
g ∈ Sn−1. Let K ∈ K(n) with K ⊂ P ∈ P(K, f). If K ⊂ C(p, g, λ) for some p ∈ Rn then
P ⊂ C(p, g, λ) and |Fω(P )| ⊂ C(p, g, λ).

Proof: By definition of P(K, f), if L ∈ K(n) and L ⊂ P , then there exist simplicesK0, . . ., Kr

such that K = K0, L = Kr, and for i = 1, . . ., r we have Ki−1 ∩ Ki = σi is a facet of Ki

with f(x) · ν(Ki) = 0 for some x ∈ σi, which implies that σi is an infacet of Ki. Repeated
application of Lemma 3.5 yields Ki ⊂ ζ for all i = 0, . . ., r and hence L ⊂ ζ . Therefore,
P ⊂ ζ since L is an arbitrary simplex in P .

Similarly, if Q ∈ F ω(P ) and L ∈ K(n) with L ⊂ Q, then by the definition of the multival-
ued map F, there are simplices K0, . . ., Kr such that K0 ⊂ P, Kr = L, and Ki−1 ∩Ki = σi is
an infacet of Ki for i = 1, . . ., r. Lemma 3.5 then implies Q ⊂ ζ .
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Lemma 3.7 Let ω, λ, δ > 0 satisfy 1 ≥ δ ≥ ∆(ω, λ) and 1 ≥ ω > λ. Suppose K is a δ-
oriented complex with respect to the vector field f which maps into a cone C(g, ω) for some
g ∈ Sn−1. Let {Ki}mi=− be simplices for which K0 ⊂ C(p, g, λ) and Ki−1 ∩ Ki = σi is an
infacet of Ki and vi be a vertex of Ki satisfying vi · g = minv∈Ki∩K(0) v · g. Then vi · g is
nondecreasing.

Proof: By definition of vi we have vi · g ≤ y · g for all y ∈ K. Since K is δ-oriented, there
exists y ∈ σi such that (vi+1 − y) · f(y) ≥ δ‖vi+1 − y‖. Therefore

(vi+1 − vi) · g ≥ (vi+1 − y) · g ≥ λ‖vi+1 − y‖ > 0

by Lemma 3.3 since f ∈ C(g, ω).

The next lemma shows that any oriented simplex is contained in some cone whose apex
is a computable distance away. This distance depends on the orientation of the cone and the
projection of the simplex orthogonal to the cone axis. Let g ∈ Sn−1 and K ∈ K(n). Define
Hg(v) = v + {x ∈ Rn : x · g = 0}. Then there exists a vertex v of K such that

K ⊂ H+
g (v) = v + {x ∈ Rn : x · g ≥ 0}.

Let Hg = Hg(v) and H+
g = H+

g (v) for this choice of v. Thus, Hg is a supporting hyperplane
of K such that K is contained in the half-space H+

g . Let πg : Rn → Hg be the orthogonal
projection onto Hg. For any simplex σ, denote by ρg(σ) the diameter of the projection πgσ,
and define ρg(K) := max{ρg(σ) : σ ∈ ∂K is an infacet of K} for K ∈ K(n).

Lemma 3.8 Let ω, δ, λ satisfy 1 ≥ δ ≥ ∆(ω, λ) and 1 ≥ ω > λ > 0. Suppose K is a δ-
oriented complex with respect to the vector field f which maps into a cone C(g, ω) for some
g ∈ Sn−1. Then there exists a point p ∈ Rn such that dist(p,Hg) = ρg(K)λ/

√
1− λ2 and

K ⊂ C(p, g, λ).

Proof: Let v be the vertex of K in Hg. Since f ∈ C(g, ω) and K is δ-oriented, if K = [σ, v],
then σ cannot be an infacet of K. Indeed, the δ-orientation condition gives v − y/‖v − y‖ ∈
C(f(y), δ) for some y ∈ σ and f(y) ∈ C(g, ω) which by Lemma 3.3 implies that v − y/‖v −
y‖ ∈ C(g, λ) which contradicts (v − y) · g < 0 since σ lies in the positive halfspace from Hg.
Thus, K must have an infacet containing v, since otherwise K would contain an equilibrium
point, but we have assumed that the vector field has no equilibria in |K|.

Now let σ be an infacet containing v. By assumption, the projection πgσ is contained in
the disk D := B(v, ρg(K)) ∩ Hg. Consider the point p = v − (ρg(K)λ/

√
1− λ2)g. The

cone C(p, g, λ) intersects Hg in precisely the disk D, which contains the projection πgσ. Thus
C(p, g, λ) contains σ. Since K is δ-oriented and σ is an infacet, the same argument used in the
proof of Lemma 3.5 implies that K ⊂ C(p, g, λ).

3.2 Approximating Chain Recurrence
In the previous subsection, we proved local results that apply on regions of the phase space
where the direction of the vector field is contained in a cone. These results assert that forward
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images of the multivalued map on an oriented complex are also contained in a cone with a
bound on the location of the apex. Now we would like a global theorem for arbitrary vec-
tor fields which asserts that map recurrent sets from oriented complexes are contained in the
ε-chain recurrent set. Our strategy will be to cover trajectories by cones. The first lemma al-
lows us to find sufficient conditions on the simplices of the complex to build a covering of a
trajectory by cones for which the apex of each cone lies in the previous cone, cf. Figure 2.

Lemma 3.9 Let 0 < λ < 1 and h ∈ Sn−1. Suppose K is δ-oriented with barycenter b and
g = f(b). Let r = ρg(K)λ/

√
1− λ2. Suppose further that K ⊂ C(x, h, λ) and the distance

from x to any point in K is larger than some β > 0. Then the apex p such that K ⊂ C(p, g, λ),
guaranteed by Lemma 3.8, can be chosen such that p ∈ C(x, h,Λ) where

Λ(λ, β, r) =
λ
√
β2 − r2

β
− r

√
1− λ2

β
(10)

provided r < β.

β

λ

Λ

r

x
h

q

Figure 1: Estimate for Λ(λ, β, r).

Proof: Consider the diagram in Figure 1. We know from Lemma 3.8 that the apex p of the
coneC(p, g, λ) is within a ball of radius r = ρg(K)λ/

√
1− λ2 centered at a vertex v ofK. We

would like to compute the largest value of Λ, i.e. the smallest cone, which contains all balls of
radius r centered at a point q ∈ C(x, h, λ) ∩ B(x, β)c. This occurs when q is on the boundary
of the cone C(x, h, λ). Let T be a vector through x that is tangent to B(q, r). Then T makes
the largest angle, cos−1(Λ), with h when T and h are coplanar with the vector q− x. Letting θ
represent the angle between the vectors q − x and T , we have that cos−1(Λ) = θ + cos−1(λ).
The result follows from the angle addition formulas and the relations sin(θ) = r/β, cos(θ) =√
β2 − r2/β, and sin(cos−1(λ)) =

√
1− λ2.

To use the previous lemma, we will need a lower bound on Λ in terms of λ so that Λ → 1
as λ→ 1. In essence this requires a bound on ρg(K) for each simplex in terms λ. Choose any
function S(λ) such that 0 < S(λ) < 1/2 and S(λ) → 0 as λ→ 1 and require that r < βS(λ),
which implies r < β/2. Then from (10) we can estimate

λ− S(λ)(λ+
√

1− λ2) ≤ Λ ≤ λ, (11)
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providing the necessary lower bound.
We will also need the following theorem on Euler approximations for ordinary differential

equations, a proof of which can be found in [4].

Theorem 3.10 Suppose a vector field f has Lipschitz constantL in some region Ω. Let x(t), x̃(t)
be continuous functions mapping into Ω whose continuous derivatives exist except at possibly
finitely many points. If x and x̃ satisfy x′ = f(x) with errors ε1 and ε2 respectively for |t| ≤ h,
then

‖x(t)− x̃(t)‖ ≤ eL|t|‖x(0)− x̃(0)‖+
ε1 + ε2
L

(eL|t| − 1) for all t ∈ [−h, h].

We are now ready to prove the main result of this section which uses the δ-orientation
condition to relate certain components of the recurrent set of the multivalued map F to the
ε-chain recurrent set.

Definition 3.11 A component Q of the recurrent set of F is a strongly recurrent if Q contains
at least two polygons which do not share a vertex.

Theorem 3.12 LetX ⊂ Rn be a compact polyhedral set, endowed with a Lipschitz unit vector
field f : X → Sn−1. For every ε > 0 there exists 0 < λ < 1, δ > 0, and β > 0 such that
if K is a δ-oriented complex on X with diam(K) < β/2 and ρg(K) < βS(λ)

√
1− λ2/λ for

all K ∈ K and Q is a strongly recurrrent component of the recurrent set of F = Fε,1 then
|Q| ⊂ Rε.

Proof: Starting from an arbitrary point x0 ∈ |Q|, we first construct an Euler path with initial
point p0 ∈ B(x0, ε/2) and terminal point x1 ∈ B(ϕ(x0, τ), ε)∩ |Q|. Iterating this construction
yields an ε-chain in |Q| starting at x0. Then we show that, since Q is strongly recurrent, this
process can be terminated at x0, so that x0 is ε-chain recurrent.

Step 1: Choices of parameters and scale.

For any choice of scale function S(λ) we can bound the right hand side of (9) by

ε(λ) :=
√

2(1− λ2 + λ2S(λ) +
√

1− λ2)1/2

and ε(λ) → 0 as λ → 1. Thus choose λ such that ε(λ) < Lε/2(e6L − 1), where L > 0 is a
Lipschitz constant for the vector field.

Consider the function g(x, y) = f(x) · f(y) onX×X . For any ω > λ, letG = g−1(ω, 1]).
ThenG is open inX×X which implies that for every point x ∈ X there is a neighborhood Ux
of x such thatUx×Ux ∈ G. Let Ω(ω) be the Lebesgue number of the cover U = {Ux : x ∈ X},
and if Ω(ω) > 1 then set Ω(ω) = 1. On the neighborhoods in U the vector field is contained
in the cone C(f(x), ω).

Choose β < min{Ω/6, ε/2e6L} and δ ≥ ∆(ω, λ).

Step 2: Construction of the Euler approximation.

On the level of simplices, the assumption that Q is strongly recurrent can be restated as
follows. Let x0 ∈ K0 ⊂ P be an n-simplex and a polygon containing x0 respectively. Then
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P is recurrent which implies that there exist simplices {Ki}mi=0 in K(n) such that K0 = Km

(assume m is minimal) and Ki−1∩Ki = σi is an infacet of Ki as in the proof of Corollary 3.6.
We will extend this sequence of simplices periodically to get J = {Ki}i≥0. Moreover, since
Q is strongly recurrent we can assume without loss of generality, that {Ki}mi=0 are not all part
of the same polygon and that {Ki}mi=0 do not all share a common vertex.

For any 0 ≤ i0 ≤ n − 1 let b be the barycenter of K = Ki0 , g = f(b), and p0 the apex
of a cone C(p0, g, λ) containing K which is guaranteed by Lemma 3.8. Then by Lemma 3.5,
C(p0, g, λ) also contains |J | ∩ B(p0,Ω). Moreover, by Lemma 3.7 we have that J cannot be
recurrent in C(p0, g, λ).

Let r be defined as in Lemma 3.9. Note that S(λ) was chosen so that r < β/2. Since
r + diam(Ki) < β for all i and J cannot be recurrent in B(p0,Ω), let Ki1 be the first simplex
after Ki0 such that dist(Ki1 , p0) ≥ 2β, which implies that dist(Ki1 , p0) < 3β. As before
let b1 be the barycenter of Ki1 and g1 = f(b1). Let p1 be the apex of a cone C(p1, g1, λ)
containing Ki1 which is guaranteed by Lemma 3.8. Then β ≤ ‖p1 − p0‖ ≤ 5β since r < β
and diam(Ki1) < β.

Iterating this construction yields a sequence of points pk such that pk+1 ∈ C(pk, gk,Λ). Let
t0 = 0, tk+1 = tk + ‖pk+1 − pk‖ and νk = (pk+1 − pk)/‖pk+1 − pk‖. This defines a piecewise
linear approximate trajectory

P (t) = pk + (t− tk)νk for t ∈ [tk, tk+1]. (12)

By Lemma 3.4, we have ‖P ′(t)− f(P (t))‖ < ε(λ) for all but finitely many times t for which
P ′(t) is undefined.

Since β < tk+1 − tk < 5β, iterate the above construction n times where n is the smallest
integer such that nβ ≥ 1. Then the total time τ =

∑n
i=1 ti ∈ [1, 5 + 5β]. Finally we choose

pn+1 to be the barycenter of Kin and the distance ‖pn+1 − pn‖ is at most r + diam(Kin) < β.
Since pn+1 ∈ C(pn, gn, λ), this final step in the path is still an ε(λ)-approximate trajectory
with total time 1 ≤ τ < 5 + 6β < 5 + 6Ω(ω)/6 < 6. This part of the proof is illustrated in
Figure 2.

Figure 2: Construction of an Euler path using succesive cone apices.

Step 3: Construction of an ε-chain.
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Choose any x0 ∈ K0. Let H(t) := ‖P (t)− ϕ(x0, t)‖. From Theorem 3.10,

H(t) ≤ eLtH(0) +
ε(λ)(eLt − 1)

L
. (13)

Now H(0) = ‖x0 − p0‖ ≤ r + diam(K) < β and from the choice of β above we see that
the first term in the right hand side of (13) is less than ε/2. Our choice of λ and the bound on
ε(λ) imply that the second term in the right hand side of (13) is less than ε/2. It follows that
H(t) < ε for 0 ≤ t < τ . Therefore, x1 = pn+1 is in |J | and is at most distance ε from x0.
Iterating this construction yields an ε-chain {xi}mi=0.

Finally we show that this process can be terminated at xm = x0 so that x0 is ε-chain
recurrent, and we will have shown that |J | ⊂ Rε. Proceed in the above construction until the
ε-chain x0, . . ., xm satisfies the following properties: m > 2 and in the construction of the cone
apices pk starting from xm ∈ Kim it happens that K0 ⊂ |J | ∩ B(pk,Ω) ⊂ C(pk, gk, λ) but
kβ < 1. Let pk+1 = x0. Then the path P (t) defined in (12) satisfies the above estimates except
that τm may be less than 1. However, τm ≤ 6. So {(x0, τ0), . . ., (xm−1, τm−1), (xm, τm)} is
almost an (ε, 1)-chain which makes x0 be ε-chain recurrent except it may happen that τm < 1.

If so, we define τ ∗m−1 = τm−1 +τm and show {(x0, τ0), . . ., (xm−1, τ
∗
m−1)} is an (ε, 1)-chain

with x0 ∈ B(ϕ(xm−1, τ
∗
m−1), ε) so that x0 is really ε-chain recurrent. We know ‖ϕ(xm−1, τm−1)−

xm‖ < ε, and hence Gronwall’s inequality implies ‖ϕ(xm−1, τ
∗
m−1) − ϕ(xm, τm)‖ < εe6L.

Since ‖ϕ(xm, τm)− x0‖ < ε, we have ‖ϕ(xm−1, τ
∗
m−1)− x0‖ < ε(1 + e6L). Here the original

definitions of λ, δ, and β may need to be revised to accommodate ε(1 + e6L) in place of ε.

A few comments about this theorem are in order. The hypothesis that the component
must be strongly recurrent is necessary in dimensions higher than two to avoid situations in
which the vector field circulates weakly around a central axis but is not ε-chain recurrent.
Such components are easily identified in practice since they share a common vertex, and this
problem does not arise in two-dimensional flows. Also, the theorem applies only to unit vector
fields. However, in practice, one can compute isolated equilibria and consider regions away
from equilibria where the vector field can be normalized by a rescaling of time.

4 Examples
In this paper we have established a framework which, given a triangulated region X and a
vector field on X , yields an index filtration for a Morse decomposition of the flow on X . We
have also given a local criterion on the individual simplices of such a triangulation which guar-
antees that the resulting index filtration approximates the flow arbitrarily closely. However, the
existence of such triangulations is an open problem.

From a computational point of view, one does not necessarily need triangulations which
approximate the flow arbitrarily closely. The Conley index can be computed from any isolating
block. In this section, we provide some examples of triangulations for various two and three-
dimensional flows and the index information obtained from them. The specific details of the
numerical algorithm used to compute these triangulations is beyond the scope of this paper
and will be addressed in future work. Here our goal is to convince the reader that, even though
there is still much work to be done before a general, practical implementation is available for
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higher-dimensional flows, it is not an unreasonable goal. Moreover, using interval arithmetic
techniques, one can rigorously check the transversality conditions for an isolating block and
provide computer-assisted proofs.

Example 4.1 (Reverse Van der Pol)

ẋ = −y
ẏ = (x2 − 1)y + x.

Figure 3 shows the minimal flow transverse decomposition of a triangulation containing
20, 000 vertices, 39, 9940 triangles, and 27, 552 polygons. From this triangulation, we can
extract a component of the recurrent set of the multivalued map which contains the periodic
orbit, see Figure 4. This set contains 8, 093 triangles in 5, 812 polygons. This triangulation
can be refined to approximate the periodic orbit more closely, as in Figure 5 which shows the
recurrent set for the multivalued map containing 20, 119 triangles.

Example 4.2

ẋ = −x(x+ 1)− z

ẏ = y(2 + 6x− y) + 3
(
x+

z

3

)
ż = z(2− x+ 5y)

This 3-dimensional system, related to the ground state problem for a system of coupled
semilinear Poisson equations with critical exponents, has a connecting orbit between the equi-
libria (0, 0, 0) and (−1,−1, 0) as the intersection of a 2-dimensional unstable manifold and a
2-dimensional stable manifold. The connecting orbit is also proven in [3] to be a parabola over
the line x = y, z = 0. An isolating neighborhood (12, 326 simplices) of this connecting orbit
is shown in Figure 6.
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Figure 3: Polygonal decomposition of a triangulation for Reverse Van der Pol con-
taining 20, 000 vertices, 39, 9940 triangles, and 27, 552 polygons. The periodic orbit is
shown.
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Figure 4: Recurrent component (8, 093 triangles) of the multivalued map for Reverse
Van der Pol.
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Figure 5: Refinement of the recurrent set (20, 119 triangles) of the multivalued map for
Reverse Van der Pol.
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Figure 6: Isolating neighborhood for connecting orbit in Example 4.2 consisting of
12, 326 simplices. Only the boundary edges are displayed.
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