
Manuscript submitted to doi:10.3934/xx.xx.xx.xx
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

EFFICIENT COMPUTATION OF LYAPUNOV FUNCTIONS FOR MORSE
DECOMPOSITIONS

ARNAUD GOULLET, SHAUN HARKER, KONSTANTIN MISCHAIKOW

Rutgers University
110 Frelinghusen Road

Piscataway, NJ 08854, USA

WILLIAM D. KALIES, DINESH KASTI

Florida Atlantic University
777 Glades Road

Boca Raton, FL 33431, USA

ABSTRACT. We present an efficient algorithm for constructing piecewise constant
Lyapunov functions for dynamics generated by a continuous nonlinear map de-
fined on a compact metric space. We provide a memory efficient data structure
for storing nonuniform grids on which the Lyapunov function is defined and give
bounds on the complexity of the algorithm for both time and memory. We prove
that if the diameters of the grid elements go to zero, then the sequence of piecewise
constant Lyapunov functions generated by our algorithm converge to a continuous
Lyapunov function for the dynamics generated the nonlinear map. We conclude
by applying these techniques to two problems from population biology.

1. Introduction. This paper describes a computationally efficient approach to ap-
proximating Lyapunov functions for a nonlinear dynamical system generated by
a continuous map f : X → X where X is a compact metric space. To emphasize
both the potential generality and the computational challenges associated with this
work we begin by recalling Conley’s fundamental decomposition theorem [6, 21].
Recall that A ⊂ X is an attractor for f if there exists a neighborhood U of A such
that A = ω(U, f), i.e. A is the omega limit set of U under f [21]. Let Att(X, f) denote
the set of attractors of f . Given A ∈ Att(X, f), its dual repeller is defined by

A∗ := {x ∈ X | ω(x, f) ∩A = ∅} .

2010 Mathematics Subject Classification. Primary: 37B25 ; Secondary: 37B30, 37B35, 37M99.
Key words and phrases. Lyapunov function, Morse decomposition, combinatorial dynamics, Conley’s

Decomposition Theorem, algorithms.
W.D. Kalies is partially supported by NSF grant NFS-DMS-0914995. S. Harker, A. Goullet and

K. Mischaikow are partially supported by NSF grants NSF-DMS-0915019, 1125174, 1248071, and con-
tracts from AFOSR and DARPA. .

1

http://dx.doi.org/10.3934/xx.xx.xx.xx

2 A. GOULLET, S. HARKER, W.D. KALIES, D. KASTI, AND K. MISCHAIKOW

Recall thatR(f), the chain recurrent set of f , satisfies

R(f) =
⋂

A∈Att(X,f)

(A ∪A∗).

Conley’s decomposition theorem guarantees the existence of a continuous func-
tion V : X → R such that for all t > 0 and all x ∈ X , V (f(x)) ≤ V (x), and
V (f(x)) = V (x) if and only if x ∈ R(f). Moreover, R(f) is the smallest set for
which a function with these properties can exist. Therefore, we refer to V as a
finest Lyapunov function for f , but emphasize that in general there is no unique
finest Lyapunov function. Thus the goal of this paper is to provide a computa-
tional algorithm which can approximate a finest Lyapunov function.

Conley’s original proof [6] was recast as an algorithm in [16] and this algorithm
then implemented in a computationally tractable manner in [3]. The algorithm we
use in this paper is essentially the same, except that certain key computations are
performed differently in order to incorporate the efficiencies needed for large com-
putations. These more efficient methods stem from using the succinct grid data
structure (Section 2), a modification of Tarjan’s algorithm [11], and the lattice struc-
ture of attractors [17].

The starting point of Conley’s proof is the realization that for any attractor A ∈
Att(X, f), there exists a continuous function

VA : X → [0, 1]

that is strictly decreasing for x ∈ X\(A∪A∗) and satisfies VA(A) = 0 and VA(A∗) =

1. We refer to VA as a Lyapunov function for the attractor repeller pair (A,A∗). Making
use of the fact that Att(X, f) is at most countable, a finest Lyapunov function can
be defined by

V (x) :=
∑

An∈Att(X,f)

βnVAn
(x) (1)

where βn > 0 and
∑
βn is bounded. In general, we will use the term Lyapunov

function for f to mean any function of the form

VA(x) :=
∑
An∈A

βnVAn
(x) (2)

where A is a subset of Att(X, f).
This formula highlights the first computational issue that needs to be addressed.

Namely, VA cannot be explicitly represented when A is infinite. To deal with this
we restrict our attention to certain finite sets of attractors that, as is shown later,
arise naturally in computations.

Recall that Att(X, f) is a bounded distributive lattice [17]. Let A denote any
bounded finite sublattice of Att(X, f). By [18, Corollary 5.13] the numerical meth-
ods described in this paper are, at least conceptually, capable of identifying A.

EFFICIENT COMPUTATION OF LYAPUNOV FUNCTIONS FOR MORSE DECOMPOSITIONS 3

Define

MA =
⋂
A∈A

(A ∪A∗). (3)

Observe that R(f) ⊂ MA. From the perspective of dynamics the most significant
difference between a finest Lyapunov function V of the form defined in (1) and a
function VA of the form defined in (2) is that the latter may be constant on a larger
set of orbits than V . Furthermore, if one chooses a nested sequence of sublattices
that converges to Att(X, f), then VA will converge monotonically to V .

This suggests that we approximate a finest Lyapunov function by approximat-
ing VA. However, as is demonstrated in Section 5 it is not necessary to use all
attractors in A to define a Lyapunov function for A that is constant on orbits in
MA. More precisely, using the lattice structure of A we prove in Theorem 5.2 that a
Lyapunov function can be defined using only the join irreducible attractors.

The next computational issue that needs to be addressed is that of identifying
a finite bounded sublattice A ⊂ Att(X, f). This involves approximating the dy-
namical system f for which we make use of the structure of MA. To explain this
structure requires some standard concepts.

Given x ∈ X , consider a function γx : Z → X , satisfying γx(0) = x, and
γx(n + m) = ϕ(n, γx(m)) for all n ∈ Z and all m ∈ Z+. Observe that given our
assumptions on f , γx need not exist. However, if it does its image, also denoted by
γx, is called a complete orbit through x. A set S ⊂ X is invariant under ϕ if and only
if for each x ∈ S there exists a complete orbit γx ⊂ S. The restriction to t ≤ 0 gives
the backward orbit γ−x . For a point x ∈ X and for a backward orbit γ−x the orbital
alpha-limit set is defined as

αo(γ−x) =
⋂
t≤0

cl
(
γx
(
(−∞, t]

))
where cl denotes closure.

Definition 1.1. Let S be a compact invariant set for f . A finite collection M =

{M(p) ⊂ S | p ∈ P} of compact, pairwise disjoint, invariant subsets of S, labeled
by the poset (P,≤), is a Morse decomposition in S if for every x ∈ S \

(⋃
p∈PM(p)

)
and every orbit γx ⊂ S there exist p, q ∈ P with q < p such that

αo(γ−x) ⊂M(p) and ω(x, f) ⊂M(q).

Each set M(p) is called a Morse set.

As defined by (3), MA is a Morse decomposition [6], and VA is constant precisely
on each of the Morse sets. As is made clear below, we identify A by identifying a
Morse decomposition.

Observe that, up to this point, the discussion applies to any dynamical system
defined on a compact metric space X and that we have reduced to problem to one
in which we need to approximate a continuous function f : X → X . An efficient

4 A. GOULLET, S. HARKER, W.D. KALIES, D. KASTI, AND K. MISCHAIKOW

universal means of approximating continuous functions on arbitrary compact met-
ric spaces is probably not possible, thus at this point we restrict the breadth of
problems being considered. In particular, for the remainder of this paper we as-
sume thatX is a rectangular subset of Rd. The justification of this choice is twofold.
First, a wide variety of models of dynamics, whether in the form of maps or dif-
ferential equations, are framed in Rd. In addition, many of the specific techniques
employed in this paper have been extended to the setting of compact triangula-
ble manifolds via chart maps, which again employ computations on rectangular
subsets of Rd (e.g. the “Atlas” feature in the Conley-Morse-Database software
[12]). Thus, from the perspective of applications working in Rd seems to be a rea-
sonable restriction. Second, our approximation method utilizes the framework for
computational global dynamics developed in a series of papers [16, 1, 4, 3, 18] and
is based on an adaptive nonuniform discretization ofX . For rectangular sets in Rd,
the construction of the discretization can be done straightforwardly via bisections
resulting in a nonuniform rectangular grid denoted by X .

Having established the goals and the generality of the results of this paper we
now turn to an brief description of the contents. Section 2 describes the combinato-
rial approximation of the dynamics. This takes the form a directed graph F whose
vertices are defined in terms of the rectangular grid X and whose edges provide
bounds on the images of f . Our focus is on describing the data structures since
this obviously impacts the size and dimension of problems that can be considered.
In particular, we describe the “TreeGrid” data structure that is used to represent X
and compute F and indicate how this is implemented using succinct binary trees.
We also provide a brief discussion on the expected memory savings provided by
this approach.

Section 3 describes the use of Tarjan’s algorithm [24] to identify a linearly or-
dered collection of sets of grid elements M(p) ⊂ X , p ∈ P called combinatorial
Morse sets with the fundamental property that the maximal invariant sets inM(p)

determine a Morse decomposition for f . We also discuss the fact that for large
applications because of the number of edges involved, storing F in memory is
impractical. For this reason we employ a modified algorithm [11] for which the
memory requirements are of the same order as the size of X while preserving the
run time of Tarjan’s algorithm.

Section 4 provides algorithms that take the combinatorial Morse sets as input
and determines pairs of sets of grid elementsA,A∗ ⊂ X such thatA approximates
an attractor and A∗ approximates the dual repeller.

Section 5 provides the theory and algorithms for the construction of a piece-
wise constant approximation of a Lyapunov function. We begin by recalling the
relationship between the partial order structure of Morse decompositions and the
lattice structure of attractors that is used to provide a proof of Theorem 5.2 cited
above. We then turn to the construction of an approximate Lyapunov function

EFFICIENT COMPUTATION OF LYAPUNOV FUNCTIONS FOR MORSE DECOMPOSITIONS 5

based on a combinatorial attractor repeller pair (A,A∗). To be more precise about
the form of this approximate Lyapunov function, we introduce the following defi-
nition.

Definition 1.2. Given a combinatorial attractor repeller pair (A,A∗) a function
VA : X → [0, 1] is a combinatorial Lyapunov function for f if it satisfies the following
conditions:

1. A = V −1
A (0) and A∗ = V −1

A (1);
2. for every x ∈ X , if x ∈ |ξ| for some ξ ∈ X and f(x) ∈ ξ′ ∈ X , then VA(ξ′) ≤
VA(ξ) and VA(ξ′) = VA(ξ) if and only if ξ ∈ A ∪A∗.

A key step in making the construction of combinatorial Lyapunov functions
practical is the introduction of efficient algorithms for evaluating the distance be-
tween points in X and the sets A and A∗. These algorithms culminate in Proposi-
tion 5.7 which provides explicit upper bounds on the memory and time costs for
the computation of the combinatorial Lyapunov function based on the dimension
of the problem and the approximation associated with the combinatorial Morse
decomposition {M(p) ⊂ X | p ∈ P}.

It should be noted that combinatorial Lyapunov functions follow directly from
the algorithms described in Section 3. Unfortunately, as one refines the grid X
and the approximation of the dynamics F , in general, these combinatorial Lya-
punov functions will not converge to Lyapunov functions for f . Thus, from our
perspective they should not be viewed as approximate Lyapunov functions for f .
However, as we make precise at the end of Section 5 the construction we perform
leads to combinatorial Lyapunov functions that converge to a Lyapunov function
of f as the approximation of X and F are refined.

Section 6 provides results on the implementation of these techniques to two
population models. These models are chosen because they exhibit complex recur-
rent dynamics with multiple basins of attraction.

2. Combinatorial representation of dynamics. As stated in the introduction, we
are interested in computing approximate Lyapunov functions for the discrete time
dynamical system obtained by iterating a map f : X → X with X a compact rect-
angular subset of Rd. Note that f need not be injective nor surjective. The com-
putational method utilizes the framework for computational global dynamics de-
veloped in a series of papers [16, 1, 4, 3, 18] as described in the introduction. First,
the phase space is discretized using a finite, rectangular subdivision of X into a
union of closed subboxes which have potential overlap only on their boundaries,
the collection of which is called a grid and denoted by X . We use the notation
| · | : 2X → Rd to denote the realization map for sets of grid elements given by
|S| = ∪ξ∈S ξ. The dynamics is then approximated by a combinatorial multivalued

6 A. GOULLET, S. HARKER, W.D. KALIES, D. KASTI, AND K. MISCHAIKOW

map F : X −→→X which maps grid elements to sets of grid elements. A combina-
torial map F can be represented as a directed graph whose vertices are the grid
elements in X and which has an edge from ξ to η if and only if η ∈ F(ξ).

The concept of an outer approximation as a method for discretizing the phase
space and approximating a discrete dynamical system was originally introduced
in [23].

Definition 2.1. Let f : X → X be a continuous map. A multivalued mapping
F : X −→→X is an outer approximation if f(ξ) ⊂ int |F(ξ)| for all ξ ∈ X where int
denotes interior.

The fundamental property of an outer approximation F is that an orbit of the un-
derlying dynamical system f is contained in grid elements corresponding to a
walk through the directed graph of F , in other words for every orbit {xn} with
xn+1 = f(xn) there exists a sequence of grid elements {ξn} with ξn+1 ⊂ F(ξn)

such that xn ⊂ ξn for all n.
In order to store a grid X and an outer approximation F in an efficient manner

for large computations, appropriate data structures are necessary, and we must
also take into account the efficiency of the operations on X and F that are required
to perform the algorithms. Since one of the main goals of this paper is to explore
the overall capability of computing Lyapunov functions, we now describe some of
these implementation issues in some detail.

Let Rect denote the collection of grid-aligned rectangular prisms (i.e. products
of intervals) in Rd. In order to construct a suitable F and X given a formula for
f on X , we require a data structure to represent X which provides the following
functionality:

Grid Data Structure Interface

1. Cover: givenR ∈ Rect, produce a collection of grid elements containing
{ξ ∈ X | ξ ∩R 6= ∅}.

2. Geometry: given a grid element ξ ∈ X , produce R ∈ Rect such that
ξ ⊂ R.

Note that both of the methods Cover : Rect ⇒ X and Geometry : X → Rect

allow for the possibility of overestimating. This allows for a trivial implementation
where Cover returns all of X and Geometry returns a bounding box for X . Such a
trivial implementation will result in correct, yet trivial results. Tighter enclosures
are better. Topological structure is captured by

Neighbors(ξ) := {η ∈ X | ξ ∩ η 6= ∅}.

EFFICIENT COMPUTATION OF LYAPUNOV FUNCTIONS FOR MORSE DECOMPOSITIONS 7

Observe that for each ξ ∈ X , Neighbors(ξ) ⊂ (Cover ◦Geometry)(ξ) The grids
we will consider will satisfy the tightness condition

Neighbors = Cover ◦Geometry, (4)

which precludes trivial implementations.
Assuming we can implement a function F : Rect→ Rect such that

f(R) ⊂ F (R) for all R ∈ Rect,

we can produce a combinatorial map F which is an outer approximation (Defini-
tion 2.1) via the composition

F := Cover ◦ F ◦Geometry. (5)

In practice one can usually implement F via rewriting the formula for f using
interval arithmetic. We do note, however, that sometimes this procedure results in
very large bounding boxes. In fact we can be somewhat more flexible and intro-
duce an enlarged collection of acceptable geometric shapes Geo in Rd such that
Rect ⊂ Geo. Then we can let Cover : Geo ⇒ X , Geometry : X → Rect, and
F : Rect→ Geo. This allows the images of F (R) to be tighter around the true im-
age f(R) since they can be chosen from a more refined family of possibilities. For
example, we could choose Geo to be sets which can be constructed from a finite
union of Rect objects. Or we could let Geo consist of all parallelepipeds. How-
ever, in the interests of simplicity, for this paper we will simply take Geo = Rect.

2.1. Binary Tree Based Grids. We implement grids using a binary tree structure.
For simplicity we take the phase space X to be a Rect object itself. We take the
root of the binary tree to correspond to the Rect object X . We choose a splitting
dimension, and subdivide the Rect object corresponding to the root node into two
congruent Rect objects via a hyperplane bisection. We take these two Rect objects
to correspond to the two children nodes. The left child will correspond to the Rect
object with coordinates below the hyperplane, and vice-versa for the right child.
We continue this procedure as we please to make a binary tree of any shape. See
Figure 1. We impose the constraint that the splitting dimension is a function of the
depth alone; in our implementation the subdivision is done round-robin through
the dimensions so that the splitting dimension at depth k is k mod d.

The binary tree one constructs via this procedure corresponds to a grid, where
the grid elements are taken to be the leaves of this tree. Notice that this binary
tree is full, meaning that a node is either a leaf or has precisely two children. In
a computer implementation one must refer to these leaves/grid elements in some
fashion, so we use contiguous integers (0, 1, 2, · · · , N − 1), where N is the total
number of grid elements. We label them according to the order the leaves are
visited in a preorder traversal (the ordered depth-first-search of the tree starting at

8 A. GOULLET, S. HARKER, W.D. KALIES, D. KASTI, AND K. MISCHAIKOW

the root). We will call this leaf indexing. In the course of devising algorithms, we
also need names for the nodes of the tree as well. For this purpose we will again
use the order in which the nodes are visited in a preorder traversal, so the nodes
are labelled (0, 1, · · · ,M − 1). We will call this node indexing. Note that a leaf has
both a leaf index and a node index, which need not be equal, and for a full binary
tree we must have M = 2N − 1.

FIGURE 1. This figure illustrates a correspondence between Grid
subdivisions and binary trees, as well as the node and leaf index-
ing scheme we use.

We will assume the binary tree data structure provides the following function-
ality:

TreeGrid Data Structure Interface

1. parent, left, right. Given the node index for a node, return the node
index for its parent, left child, or right child (respectively). If there is no
such node (i.e. the root has no parent and leaves have no left or right
child) then return M .

2. GridToTree. Given a leaf index, return the node index of the correspond-
ing leaf.

3. TreeToGrid. Given a node index, give the leaf index of the correspond-
ing node if the node is a leaf. If the node is not a leaf, return N .

4. bounds. Return the Rect object corresponding to the root node.

Proposition 2.2. The TreeGrid interface can be used to implement a Grid satisfying the
tightness condition (4).

Proof. We give implementations of Geometry and Cover. For Geometry, we can
determine the Rect object for a grid element, which will be referred to by its leaf
index, by calling GridToTree, calling parent repeatedly to find the path to root,

EFFICIENT COMPUTATION OF LYAPUNOV FUNCTIONS FOR MORSE DECOMPOSITIONS 9

and along the way checking if we came from the left or right child by calling left
and right and comparing the node indices. This results in path-to-root informa-
tion, which tells us a sequence of subdivisions which when applied to bounds will
result in the correct Rect object to return.

Cover can also be implemented efficiently using the binary-tree structure. When
presented with a Rect object to cover, we begin by seeing if it intersects with the
Rect corresponding to the root of the tree. If it does intersect, we recurse and ask
this question for both of its children. If it does not intersect, we do nothing and
continue on with other branches. When we find a leaf node that intersects, we call
TreeToGrid and place the appropriate leaf index in the list of results for Cover.

Provided the numerics used in handling computer representations of Rect ob-
jects, which involve floating point representations, are performed with care, it is
straightforward to see the tightness condition (4) can be achieved.

2.2. Succinct Binary Tree Grid Implementation. One way of implementing a data
structure respecting the TreeGrid interface is to create a binary tree structure by
creating “Node” objects in memory that contain pointers to parent, left child, right
child, and an integer containing the node index. We could use a size M array to
store pointers to these Nodes. GridToTree and TreeToGrid could be implemented
by storing arrays of integers of length N and M , respectively. The space usage of
such an implementation would be 6M + N ≈ 13N words of storage. A word of
storage is the amount of computer memory used to store a pointer. In this era, it
is usually 64 bits. Hence this results in a data structure that requires roughly 104
bytes per grid element.

The pointer-based method is quite reasonable in many situations. Its drawback
is its space usage. At the expense of an up-front constant in time usage, it is pos-
sible to substantially bring down the space requirements by using methods from
the succinct data structures literature, in particular succinct balanced parentheses lists
and rank-select structures [20, 5, 13]. Specifically, it is possible to construct a succinct
TreeGrid data structure providing the required methods in constant time and us-
ing only 2N + o(N) bits of space. Ignoring the o(N) overhead, this means that
for 64-bit words the succinct methods are roughly (13N · 64)/2N = 416 times as
space-efficient as a pointer-based method.

We describe how we accomplish this. First, we review the succinct data struc-
tures at our disposal. The key features of a succinct balanced parentheses list are
that they require only 2n+ o(n) bits of space to store n pairs of matching parenthe-
ses, and they allow the operations of findopen and findclose, which find opening
and closing matching parenthesis, respectively, in constant O(1) time. Meanwhile,
a rank-select structure is a succinct data structure that requires n + o(n) bits of
space and is capable of answering rank and select queries about an n bit sequence
in O(1) time. A rank(i) query asks how many 1 bits occur strictly before some

10 A. GOULLET, S. HARKER, W.D. KALIES, D. KASTI, AND K. MISCHAIKOW

position 0 ≤ i ≤ n in the sequence. A select(i) query asks for the maximal j such
that rank(j) = i. We also assume the ability to access the underlying bit sequence
in constant time.

We utilize these structures in the following way. Given a full binary tree with N
leaves, and hence M := 2N − 1 nodes, we construct an M bit sequence we call the
leaf sequence ` such that `[k] = 1 if and only if the node with node index k is a leaf. A
leaf sequence completely and succinctly characterizes a full binary tree. Note that
the last bit in the leaf sequence is a 1 so that the preorder traversal ends at a leaf.
Hence the firstM−1 bits of the leaf sequence has an equal number of 0’s and 1’s. In
fact, interpreting a 0 (non-leaf) as an opening parenthesis and a 1 (leaf) as a closing
parenthesis, the first M − 1 bits are a balanced parentheses list. Accordingly, we
can build a rank-select query structure and a balanced parentheses query structure
on top of this for an additional o(M) space.

Proposition 2.3. Let T be a full binary tree with M nodes. The queries findopen,
findclose on the M -bit leaf sequence can be used to implement parent, left, and right
via the following formulas, where we refer to nodes via their node index:

left(x) =

{
x+ 1 if `[x] = 0 i.e. x is not a leaf

m (undefined) otherwise
(6)

right(x) =

{
findclose(x) + 1 if `[x] = 0 i.e. x is not a leaf
m (undefined) otherwise

(7)

parent(x) =

undefined if x = 0 (i.e. x is the root)
x− 1 if `[x− 1] = 0 (i.e. (x− 1) is not a leaf)

findopen(x− 1) otherwise
(8)

Moreover, the queries rank and select on the leaf sequence implement TreeToGrid and
GridToTree, respectively.

Proof. The key idea is that each pair of matching parentheses in the leaf sequence
corresponds to a pairing between a tree node x (the open parenthesis) and the last
preordered leaf y on x’s left subtree (the closing parenthesis). This is very useful
since the next node preordered after the left subtree of x, namely y + 1, is the right
child of x. This yields the formulas. The final statement follows directly from the
definitions.

Proposition 2.3 implies we can construct the succinct “TreeGrid” data structure
requiring only the 2N + o(N) bits of space advertised above. We should empha-
size that this is by no means the only possible construction to achieve these ends.
For example, the pioneering paper of Jacobson [13] describes a method using rank-
select on level-order bitmaps that is suitable to binary trees such as ours that could

EFFICIENT COMPUTATION OF LYAPUNOV FUNCTIONS FOR MORSE DECOMPOSITIONS 11

achieve 4N + o(N) bits. Our construction (which we presume is not original) is in-
teresting because it is ultra-succinct [14], that is, it beats the 4N+o(N) information-
theoretic bounds for representing general binary trees by utilizing special structure
(namely, fullness).

In the computation of combinatorial Morse sets, we also have occasion to deal
with subgrids, and the strategy our implementation uses is to wrap the above data
structure with a bit-sequence which “knocks-out” extra leaves from a full binary
tree to achieve an arbitrary binary graph. For an arbitrary binary tree with M

nodes, this results in at worst 2M+o(M) bits for a full tree containing the arbitrary
binary tree, and another M + o(M) bits to represent a rank/select structure on the
knock-out sequence. This does not qualify as succinct; we would need to achieve
2M + o(M) bits worst-case, not 3M + o(M) bits in the worst-case. However, in
practice the subgrids that arise in computational dynamics do not approach this
worst case, because nodes with only one child tend to be rare. Accordingly, we
consider the best case, where the tree is “almost full”. In this situation one sees our
strategy achieves roughly 1.5M + o(M) bits. Hence despite not technically being
succinct in the worst case, in the best case, which we claim will be the average case
in practice, we obtain ultra-succinct performance. We discuss the performance of
our implementation, which is based on the Succinct Data Structures Library [10],
in Section 6.

3. Extracting recurrent and gradient-like dynamics. Since we do not assume that
the continuous map f : X → X generating the dynamics is injective or surjective,
X need not be invariant. We compute Morse decompositions with respect to the
maximal invariant set in X ,

S = Inv(X, f) = {x | there exists a complete orbit {xn}∞n=−∞ with x0 = x}.

As we described in the previous section, orbits of a dynamical system are rig-
orously contained in walks through the directed graph generated by an outer ap-
proximation of that system. In particular this implies that if an orbit {xn} is chain
recurrent, then it is contained in a periodic cycle in the directed graph, i.e. there
exists a periodic sequence {ξn} with ξn+1 ⊂ F(ξn) such that xn ⊂ F(ξn) for all n.
Therefore, the problem of computing a neighborhood of the chain recurrent set can
be reduced to finding the set of cyclic vertices in a directed graph, which we will
call the recurrent set of F .

Analogous to the chain recurrent set of a dynamical system, the recurrent set of
a graph is naturally partitioned by the reachability relation. That is, the equiva-
lence relation ξ ∼ η, if there exists a walk from ξ to η and a walk from η to ξ in F ,
partitions the recurrent set of F into its recurrent components, which are also known
as the strongly connected path components of the digraph. These recurrent com-
ponents have a partial order induced by the reachability relation in the digraph of
F . Corollary 4.2 in [16] implies that once we have computed the recurrent set of F ,

12 A. GOULLET, S. HARKER, W.D. KALIES, D. KASTI, AND K. MISCHAIKOW

the geometric realization of the recurrent components are isolating neighborhoods
of a Morse decomposition with the same partial order, i.e. we can rigorously ex-
tract a Morse decomposition from an outer approximation F : X −→→X . Due to this
connection with a Morse decomposition, we denote the recurrent components by
M. We emphasize that the recurrent components do not partition the digraph of
F , since elements in the recurrent set must be cyclic through a nontrivial walk in
F . In contrast, the strongly connected components do partition the digraph. Each
recurrent component is a strongly connected component. However, each noncyclic
vertex is also itself a strongly connected component but is not a recurrent vertex.

The classical algorithm for extracting strongly connected components of a di-
rected graph given by its adjacency lists (lists of target vertices given a source
vertex), is called Tarjan’s algorithm [24]. For a graph with V vertices and E edges,
Tarjan’s algorithm requiresO(E+V) time andO(E+V) space to identify the collec-
tion of strongly connected components S. One identifies the recurrent components
M as the strongly connected components containing at least one edge; i.e. compo-
nents with more than one vertex as well as the single vertex components with self
loops.

Tarjan’s algorithm outputs the strongly connected components in a useful or-
der. Recall that any directed acyclic graph admits a topological sort, which is a total
ordering of the vertices such that a < b only if b cannot reach a. This concept ap-
plies to strongly connected components of a directed graph since collapsing these
components to single vertices renders the directed graph into an acyclic one, the so-
called condensation graph. The order in which Tarjan’s algorithm produces strongly
connected components will correspond to a reverse topological sort of the conden-
sation graph. We will make use of this property later, when we describe algorithms
that require iterating through strongly connected components S or recurrent com-
ponentsM in the order of a topological sort or reverse topological sort.

We point out that the O(E) space bounds arise from storage of the adjacency
lists and could be quite large. Indeed, E could be as large as V 2 in worst case.
Thus the space requirements for Tarjan’s algorithm could dominate over the space
requirements of the “Grid” data structure. Observe that size of the adjacency lists
computed via Equation (5) are easily bounded from below by the product of the
eigenvalues ofDf that are larger than one. In general it will be considerably larger.
In other words, storage of the graph can be quite expensive.

There is a solution to this problem. A modified version of Tarjan’s algorithm,
due to one of the authors and motivated by precisely this application, circumvents
the need to store the adjacency lists and provides an O(V) space bound [11]. This
algorithm requires that adjacency lists can be retrieved or computed on demand.
Moreover, during execution it only asks for each adjacency list precisely once. Con-
sequently it runs in time comparable to Tarjan’s algorithm. These properties make
it well suited for computing strong components of the directed graph arising from

EFFICIENT COMPUTATION OF LYAPUNOV FUNCTIONS FOR MORSE DECOMPOSITIONS 13

the combinatorial map F of Equation (5). This algorithm has been implemented
and tested, and is publicly available in Conley-Morse-Database [12].

We have also recently become aware of the strong components algorithm of
[15], which assumes adjacency lists are available in external memory and attempts
to minimize I/Os. While it was not the author’s intention, in fact it can be rein-
terpreted as an algorithm for computing strongly connected components which
requires only O(V) space provided one is given the ability to compute adjacency
lists on demand. Detailed comparisons of up-front constants between these alter-
natives will be made in [11].

4. Attractor-repeller pairs. In the previous section we observed that graph theo-
retic techniques provide a naturally efficient way to obtain an approximate Morse
decomposition from an outer approximation. To recover an approximate Lya-
punov function from this information, we need to describe the relationship be-
tween Morse decompositions and attractor-repeller pairs. We assume that the
reader is familiar with basic concepts of limit sets, attractors, and repellers in
the context of a dynamical system. However, since we are working with semi-
dynamical systems that are not necessarily invertible, we must address some sub-
tleties that do arise; also we must describe these concepts in the context of combi-
natorial multivalued maps.

Since X need not be invariant, A∗ also need not be invariant. The phase space
X is only forward invariant in general, and A∗ is the maximal forward invariant
set in the complement of an attracting neighborhood U of A. For combinatorial
multivalued maps F define the ω-limit set and α-limit set of a set U ⊂ X by

ω(U) =
⋂
k≥0

⋃
n≥k

Fn(U) and α(U) =
⋂
k≤0

⋃
n≤k

Fn(U).

Definition 4.1. Let F : X −→→X . A set A ⊂ X is an attractor for F if F(A) = A. A
set R ⊂ X is a repeller for F if F−1(R) = R. The dual repeller A∗ to an attractor A
is defined by A∗ = α(X \ A). Given an attractor A, the pair (A,A∗) is called an
attractor-repeller pair for F . The set of all attractors is denoted by Att(X,F).

An attractor-repeller pair is a Morse decomposition with two Morse sets, the
attractor and its dual repeller, with the partial order where the repeller is greater
than the attractor. Just as in the case of Morse decompositions, [16, Proposition 5.5]
implies that if F is an outer approximation, then the realizations (|A|, |A∗|) of an
attractor-repeller pair (A,A∗) are attracting and repelling neighborhoods respec-
tively for some attractor-repeller pair (A,A∗) for f .

Recall that in Section 3 we describe an efficient algorithm to obtain the following
information from the digraph representing F :

1. the recurrent componentsM = {M(p) | p ∈ P},
2. the strongly connected components S, and

14 A. GOULLET, S. HARKER, W.D. KALIES, D. KASTI, AND K. MISCHAIKOW

3. a topological sort of S.

Given a recurrent component M ∈ M, define Γ+(M) to consist of all grid ele-
ments in X reachable from M . Since F(Γ+(M)) = Γ+(M), Γ+(M) ∈ Att(F). We
show in Section 5 that the information in the attractors {Ap := Γ+(M(p)) | p ∈ P}
are sufficient to produce a combinatorial Lyapunov function. Consequently, we
now give an algorithm to compute the combinatorial attractor-repeller pairs of this
form using only the information from the connected components and topological
sort.

Algorithm 1 Computing Attractor/Dual Repeller Pairs

Global variables:
A list M of the combinatorial Morse
sets, a topologically sorted list S
of strongly connected components,
and an array SCC indicating which
strongly connected component each
grid element is in.

AttractorRepellerPairs
for M ∈M do
A ← ComputeAttractor(M).
A∗ ← ComputeDualRepeller(A).

end for

ComputeAttractor
Given: M ∈M
Return: Minimal attractor containing
M

Create an empty set U

Insert M into U .
A ← ForwardReachable(U)

Return A.

ComputeDualRepeller
Given: Combinatorial attractor A ⊂
S
Return: Combinatorial dual repeller
of A
Create an empty set U
for M ∈M do

if M /∈ A then
Insert M into U .

end if
end for
A∗ ← BackwardReachable(U)

Return A∗.

EFFICIENT COMPUTATION OF LYAPUNOV FUNCTIONS FOR MORSE DECOMPOSITIONS 15

Global variables:
A topologically sorted list S of
strongly connected components, and
an array SCC indicating which
strongly connected component each
grid element is in.

ForwardReachable:
Given: U ⊂ S
Return: {S ∈ S | ∃T ∈
U , T reaches S}
A ← U .
for S ∈ S (in order) do

if S ∈ A then
for u ∈ S do

for v ∈ F(u) do
T ← SCC[v].
Insert T into A.

end for
end for

end if

end for
Return A

BackwardReachable:
Given: U ⊂ S
Return: {S ∈ S | ∃T ∈
U , S reaches T}.
A∗ ← U .
for S ∈ S (in reverse order) do

if S /∈ A∗ then
for u ∈ S do

for v ∈ F(u) do
if SCC[v] ∈ A∗ then

Insert S into A∗.
end if

end for
end for

end if
end for
Return A∗.

Proposition 4.2. Given the recurrent componentsM = {M(p) | p ∈ P}, Algorithm (1)
computes all combinatorial attractor-repeller pairs of the form{

(Ap,A∗p) | Ap = Γ+(M(p)) and p ∈ P
}

in timeO(card(P)·E), whereE is the number of edges in the directed graph corresponding
to the combinatorial map F of Equation (5).

Proof. The correctness of ComputeAttractor requires showing that it computes
ω(M) = Γ+(M) for a recurrent set M ∈ M. This is the case provided For-
wardReachable is correct, since it promises to provide all strongly connected com-
ponents reachable from M . Correctness of ComputeDualRepeller requires that
we show it computes α(X \ A). It is straightforward to verify that α(X \ A) is the
subset of grid elements which can reach some recurrent set M in X outside of A.
These grid elements comprise the strongly connected components which can reach
recurrent sets M which are not in A. Hence the algorithm for ComputeDualRe-
peller is correct assuming the correctness of BackwardReachable.

Next, we show ForwardReachable is correct and executes in O(E) time, which
follows from that disjointness of strongly connected components. Indeed we have

16 A. GOULLET, S. HARKER, W.D. KALIES, D. KASTI, AND K. MISCHAIKOW

that Adjacencies(u), which takes O(card(F(u)) time, is called at most once per
vertex u ∈ X . Moreover, “Insert SCC[v] into A”, which takes O(1) time, is exe-
cuted at most card(F−1(u)) times per vertex u ∈ X . This counts each edge of the
directed graph at most twice, so that the sum of this time can thus be bounded by
a constant factor times the number of edges of the directed graph corresponding to
F , which gives a total complexity ofO(E) time. Correctness of ForwardReachable
follows from induction given (1) that S is processed in topologically sorted order
and (2) the observation that if a strongly connected component S belongs to the
forward reachable set of A, then either S ∈ U or there exists a strongly connected
component T which directly reaches S, that is, a vertex of S is in the adjacency list
of a vertex in T , and hence T necessarily occurs before S in the topological sort of
S. A similar argument shows that BackwardReachable is correct and computes in
worst case O(E) time.

Since card(P) < E, it follows that the complexities of ComputeAttractor and
ComputeDualRepeller are dominated by the complexities of their calls to For-
wardReachable and BackwardReachable, and hence are both O(E) as well. Since
AttractorRepellerPairs calls ComputeAttractor and ComputeRepeller card(P)

times, its complexity is bounded by O(card(P) · E), as claimed.

5. Lyapunov functions. Algorithm (1) takes Morse sets in a Morse decomposition
and produces a collection of attractors. However, there exists a deeper structural
relationship between Morse sets and attractors that we now describe. We use this
relationship to restrict the set of attractors used to define a Lyapunov function for
the Morse decomposition. As discussed in the Introduction, this Lyapunov func-
tion is defined in terms of Lyapunov functions for attractor repeller pairs. Thus we
address the algorithmic issues of constructing a combinatorial Lyapunov function
in this limited setting, before extending it to the full Morse decomposition.

5.1. A Lyapunov function for Morse decompositions. We continue to study the
dynamics generated by a continuous map f : X → X . Throughout this section we
set S := Inv(X, f). For the remainder of this subsection we restrict our attention to
f : S → S. Since we are focussing, for the most part, on the relationship between
attractors and Morse decompositions and since Att(X, f) = Att(S, f), this is not a
serious restriction.

As indicated in the Introduction Att(S, f) is a bounded distributive lattice. To
be more precise given A,A′ ∈ Att(S, f) the lattice operations are defined by

A ∨A′ = A ∪A′ and A ∧A′ = ω(A ∩A′, f)

and the minimal and maximal elements are 0 = ∅ and 1 = Inv(X, f).
Let M = {M(p)} be a Morse decomposition of S labelled by the poset (P,≤).
Given a finite poset (P,≤), the set of all down sets of P is defined by

O(P) = {γ ⊂ P | p ∈ γ implies r ∈ γ for all r ≤ p}.

EFFICIENT COMPUTATION OF LYAPUNOV FUNCTIONS FOR MORSE DECOMPOSITIONS 17

A direct calculation shows that O(P) is a finite, distributive lattice under the op-
erations of union and intersection. In [19] it is shown that the map µ : O(P) →
Att(S, f) defined by

µ(γ) =
⋃
q∈γ

Wu(M(q))

is a lattice embedding, where Wu(M) is the unstable set of M . The image A =

µ(O(P)) is then a finite bounded sublattice of Att(S, f) which is isomorphic to O(P).
In this way the attractor A is determined uniquely from the Morse decomposition
M and the partial order (P,≤).

We are interested in Lyapunov functions that are compatible with Morse de-
compositions which leads to the following definition.

Definition 5.1. Let M be a Morse decomposition for S = Inv(X), labeled by a
poset (P,≤), i.e. M = {M(p) | p ∈ P}. A continuous function V : X → [0, 1] which
satisfies

(i) for every p ∈ P there is cp ∈ [0, 1] such that M(p) ⊂ V −1(cp),
(ii) if q < p, then cq < cp, and

(iii) if x ∈ X \
⋃
p∈PM(p), then V (f(x)) < V (x),

is called a Lyapunov function for (X,M,P,≤).

From the definition of Morse decomposition, one can check that for every at-
tractor A ∈ A each Morse set is contained in either A or A∗, and in addition⋂

A∈A

(A ∪A∗) =
⋃
p∈P

M(p).

Following the original ideas of Conley, for any set of weights βA > 0 with∑
A∈A βA = 1 and any choice of Lyapunov functions VA for attractor-repeller pairs

(A,A∗) the function

V =
∑
A∈A

βAVA (9)

is a Lyapunov function for the Morse decomposition M with order (P,≤), see Def-
inition 5.1 and also [16, Equation 7]). However, using all attractors in A to define
such a Lyapunov function is more than necessary, and to develop a computation-
ally efficient algorithm it is desirable to find a smaller collection of attractors that
will generate a Lyapunov function. The optimal such set is ultimately determined
by the specific structure of the poset (P,≤), but there is a natural subset that works
which can be defined for all partial orders and which typically yields a significant
reduction in the number of attractors that need to be considered.

The elements in O(P) can be written as unions of down sets of the form ↓ p =

{q ∈ P | q ≤ p},which are called the join-irreducible elements of the lattice O(P). The
set of join irreducibles is denoted by J∨(O(P)). Therefore each attractor in A can be
written as a union of attractors of the form Ap = ν(↓p), i.e. J∨(A) = {Ap | p ∈ P}.

18 A. GOULLET, S. HARKER, W.D. KALIES, D. KASTI, AND K. MISCHAIKOW

Theorem 5.2. Let S be a compact, invariant set, let M be a Morse decomposition for S,
labeled by a poset (P,≤), and let A be the corresponding sublattice of attractors whose join
irreducible elements are Ap. For each p ∈ P let βp > 0 with

∑
p∈P βp = 1 and Vp be a

Lyapunov function for the attractor-repeller pair (Ap, A
∗
p). Then

V =
∑
p∈P

βpVp (10)

is a Lyapunov function for (S,M,P,≤).

Proof. From the definition ofAr = ν(↓r) we have thatMp ⊂ Ar so that Vr(Mp) = 0

if p ≤ r and Mp ⊂ A∗r so that Vr(Mp) = 1 if p 6≤ r. Hence V (Mp) =
∑
p 6≤r βr. If

q < p, then cq = V (Mq) =
∑
q 6≤r βr <

∑
p 6≤r βr = V (Mp) = cp. This establishes

conditions (i) and (ii) in Definition 5.1.
Now suppose x ∈ S \ ∪p∈PM(p). Since M is a Morse decomposition, there

exist p, q with q ≤ p such that ω(x) ⊂ M(q) and αo(γ−x) ⊂ M(p). Then M(q) ⊂
Aq,M(p) ⊂ A∗q , and x ∈ S \ (Aq ∪ A∗q), which implies that Vq(f(x)) < Vq(x). Since
each function Vp is decreasing, V (f(x)) < V (x) This establishes condition (iii) in
Definition 5.1 and completes the proof.

Note that in Theorem 5.2 the partial order (P,≤) on the Morse sets is given.
Any coarser order obtained by adding more relations is also admissible, but such
a coarser order relation results in a loss of dynamical information about the sys-
tem. In particular, the set of join irreducible elements may grow, thus requiring
additional attractors to be included in the definition of V , i.e. in (10).

5.2. Approximating Lyapunov functions for attractor-repeller pairs. LetA ∈ Att(X, f).
We begin by describing the the standard analytical construction of a Lyapunov
function for an attractor-repeller pair (A,A∗). The distance potential dpA : X → [0, 1]

defined by

dpA(x) =
dist (x,A)

dist (x,A) + dist (x,A∗)
(11)

satisfies dp−1
A (0) = A and dp−1

A (1) = A∗. Moreover, dpA is Lipschitz since A and
A∗ are disjoint and compact. We incorporate the dynamics of f through the family
of functions

v∗A(x, k) = max{dpA(y) | y ∈ γx([k,∞))}

which maximize the distance potential over forward orbits. The function

VA(x) =

∞∑
k=0

2−k−1v∗A(x, k) (12)

is a Lyapunov function for (A,A∗), as is shown in [16].
Following [16, 3] this function can be approximated by a function on grid ele-

ments as follows. Let A ∈ Att(X ,F). With respect to the attractor repeller pair

EFFICIENT COMPUTATION OF LYAPUNOV FUNCTIONS FOR MORSE DECOMPOSITIONS 19

(A,A∗) for F , a distance potential dpA : X → [0, 1] is defined by

dpA(ξ) =
dist (xξ, |A|)

dist (xξ, |A|) + dist (xξ, |A∗|)
(13)

where xξ is the centroid of ξ. Then the function ν∗A : X → [0, 1] defined by

ν∗A(ξ) = max
η∈Γ+

0 (ξ)
dpA(η) (14)

maximizes the value of dpA over the complete forward image of ξ. Finally we
consider the function VA : X → [0, 1] defined recursively by

VA(ξ) =

0 if ξ ∈ A

1 if ξ ∈ A∗
1
2ν
∗
A(ξ) + 1

2 maxη∈F(ξ) VA(η) otherwise.

(15)

Lemma 3.2 and Theorem 3.3 in [3] imply that if (A,A∗) is an attractor-repeller
pair for F that well approximates the attractor-repeller pair (A,A∗), then VA is a
combinatorial Lyapunov function for (A,A∗) which well approximates VA. We
make this statement more specific in Section 5.4.

In practice, computing the distance potential dpA using distances between sets
of grid elements is not computationally efficient. However, we now describe an
O(N logN) time algorithm, where N is the number of grid elements in X , to com-
pute a different combinatorial distance potential cdpA : X → R given a combi-
natorial attractor-repeller pair (A,A∗). We show it also approximates the true
distance potential (11) arbitrarily closely as we refine the grid. Our algorithm
works in the case where the distance metric d is chosen to be Manhattan distance
d(x, y) =

∑d
k=1 |xk − yk| in Rd, and the grid implements the “TreeGrid” interface

discussed above so that there is an underlying binary tree. We remark that this
algorithm is a vast improvement over a naive approach where one calculates via
brute force the minimum distance from each grid element of X to each grid ele-
ment in the attractor and in the repeller, which would require O(N2) time.

5.2.1. Dijkstra’s Algorithm. A key subroutine of our distance potential algorithm
will be Dijkstra’s algorithm [8] for computing shortest paths on a graph W with
weighted edges. Recall that Dijkstra’s algorithm proceeds by seeding an initial
vertex set S with a priority value 0, and placing these vertices in a priority queue,
with the highest priority being given to those vertices with the smallest priority
value. A vertex uwith highest priority is processed by marking it as processed, and
placing each unprocessed neighbor v of u into the priority queue with a priority
value equal to the priority value of u plus the weight of the edge from u to v. When
a vertex is inserted into the priority queue multiple times, the effect is the vertex
will have the smallest priority with which it has been inserted. This continues
until all vertices have been processed. The Dijkstra distance of a vertex v to the set
S, which we will denote dW(v, S), is the priority value attached to the vertex v

20 A. GOULLET, S. HARKER, W.D. KALIES, D. KASTI, AND K. MISCHAIKOW

when it is processed. If the algorithm is implemented with a so-called Fibonacci
heap, then this algorithm, Dijkstra(S,W), requires O(E + V log V) time and O(V)

space [9], and returns the Dijkstra distances dW(v, S) for all v ∈ W . Here the log V

cost is associated with the sorting necessary in the priority queue.
Our algorithm for computing a combinatorial distance potential requires a weighted

graph W to which Dijkstra’s algorithm is applied. To this end, we utilize the bi-
nary tree structure underlying the grid X . In particular, we realize the vertices of
W as the nodes in the binary tree underlying X . We will abuse notation and re-
gard X as a subset of the vertex set. What is left is to specify the edges ofW and
their weights. To this end, first recall that to each such node v ∈ W there is an
associated rectangular box in Rd, and we will use the notation |v| to denote this
geometric realization.

We let (u, v) be an edge inW if one of two conditions holds:

• Condition (A): u and v have a parent-child or child-parent relationship.
• Condition (B): The rectangles |u| and |v| are congruent and share a codimension-

1 face.

In either case, we assign a weight to the edge (u, v) which is the Manhattan distance
between the midpoints of |u| and |v|.

The motivation for this weighted graph comes from the following observation.
Call a path in Rd that is comprised of a finite sequence of axis-aligned treks a
Manhattan curve. Paths in the graph W correspond to Manhattan curves, and the
weights on the edges correspond to the Manhattan distances of the treks of which
they are comprised. Hence the Dijkstra distance on this graph gives an upper
bound for the Manhattan distance between the grid elements. Shortly, we will
show that the amount of overestimate can be bounded.

We omit the algorithm for producing the weighted adjacency list of a vertex v
in the weighted graph W and content ourselves with only a few comments. It is
straightforward to give the adjacencies due to Condition (A). Condition (B) can
be re-expressed it in terms of the path-from-root information, i.e. the sequence of
left/right directions which one must follow from the root of the tree to find the ver-
tex. Expressing it this way provides a method to construct an efficient algorithm.
Given path-from-root information, we split it into d lists such that the k-th list has
the path information at depths {i | i mod d = k}. The idea is that the k-th list has
the path information corresponding to choices made for splitting dimension k. If
for each such list we construct a sequence of digits by a digit 0 for a left move and
a 1 for a right move, we obtain d binary sequences. These binary sequences we
may then reinterpret as nonnegative integers written in binary notation. Call these
the coordinates of the tree node, and indeed for a uniformly subdivided grid they
would be precisely the natural integer coordinates one would put at a fixed depth.
Supplemented with depth, the coordinates provide an alternative characterization
of the tree node. Using this terminology, Condition (B) states that u and v are the

EFFICIENT COMPUTATION OF LYAPUNOV FUNCTIONS FOR MORSE DECOMPOSITIONS 21

same depth and that the coordinates of u and v are identical in all but one dimen-
sion, and in the dimension the coordinates differ, they differ by precisely one. With
this insight it becomes straightforward, albeit somewhat tedious, to produce an ef-
ficient algorithm that relies on tree-moves for computing the weighted adjacency
list of a vertex v. We find the coordinates for v, find all of the at most 2d coordi-
nates which are neighboring in the sense of Condition (B), and locate them via tree
moves left and right starting at the root by following the directions of the binary
digits of the new coordinates in round-robin fashion.

Proposition 5.3. The Dijkstra distance on W approximates the Manhattan distance in
the following sense. For each pair of grid elements ξ1, ξ2 ∈ X , and for each x1 ∈ ξ1,
x2 ∈ ξ2, we have

|dW(ξ1, ξ2)− d(x1, x2)| < 5 δ (16)

where δ is the maximal diameter of the grid elements, i.e. δ := max{diam (ξ) | ξ ∈ X}.

Proof. Let xξ1 , xξ2 be the centroids of ξ1, ξ2, respectively. Observe d(xi, xξi) ≤
δ/2 for i = 1, 2. Hence |d(x1, x2) − d(xξ1 , xξ2)| ≤ δ. What remains is to show
|d(xξ1 , xξ2) − dW(ξ1, ξ2)| < 2δ. We must have dW(ξ1, ξ2) ≥ d(xξ1 , xξ2), since the
Dijkstra distance in W between ξ1 and ξ2 measures the Manhattan distance of
some Manhattan curve between xξ1 and xξ2 . We need only bound how much
dW(ξ1, ξ2) may be overestimating d(xξ1 , xξ2). In order to do this, we give a path
in W which we can show does not overestimate by too much. We construct this
path as follows. Let D be the largest number so that every leaf in the binary
tree for X is at least depth D. Let η1 and η2 be the unique ancestors at depth
D of ξ1 and ξ2 in the binary tree for X . Note that we might have ξ1 = η1 or
ξ2 = η2 in this construction. Consider the path in W that starts at ξ1, climbs
through parents until depth D is reached at η1 ∈ W , walks to adjacent neigh-
bors at depth D, which are defined by Condition (B), in the most straightforward
way to reach η2 ∈ W , and then descends through the appropriate path of chil-
dren in order to reach ξ2. Let xη1 , xη2 be the centroids of η1, η2, respectively. Ob-
serve that dW(η1, η2) = d(xη1 , xη2) since the adjacencies given by Condition (B)
of W at depth D provide a uniform grid. From this we may realize the bound
0 ≤ dW(ξ1, ξ2)− d(xξ1 , xξ2) ≤ dW(ξ1, η1) + d(xξ1 , xη1

) + dW(ξ2, η2) + d(xξ2 , xη2
) ≤

dW(ξ1, η1) + dW(ξ2, η2) + 2δ. The latter inequality holds since the points xξi , xηi
for i = 1, 2 are both contained in a rectangle of diameter less than δ. For each
k = 0, 1, 2, · · · , the sum of the weights of parent-child edges leading from depth
D + kd to depth D + (k + 1)d is at most δ/21+k since it consists of d treks whose
lengths most be less than the diameter of a depth D + kd tree node. Hence a
geometric series argument gives us dW(ξ1, η1) <

∑∞
k=1 δ/2

1+k = δ and similarly
dW(ξ2, η2) < δ. This gives us dW(ξ1, ξ2)− d(xξ1 , xξ2) < 4δ, which can be combined
with |d(x1, x2)− d(xξ1 , xξ2)| ≤ δ to give the desired result.

22 A. GOULLET, S. HARKER, W.D. KALIES, D. KASTI, AND K. MISCHAIKOW

Corollary 5.4. Given S ⊂ X and ξ 6∈ S we have

|dW(ξ,S)− d(xξ, |S|)| < 5 diam (X)

where dW(ξ,S) = minη∈S dW(ξ, η) and d(xξ, |S|) = miny∈|S| d(xξ, y).

Proof. Proposition 5.3 gives dW(ξ, η) ≤ 5diam (X) + d(xξ, y) for all η ∈ S and
all y ∈ |S| which implies minη∈S dW(ξ, η) ≤ 5diam (X) + miny∈|S| d(xξ, y). Hence
dW(ξ,S)−d(xξ, |S|) ≤ 5diam (X). The inequality d(xξ, |S|)−dW(ξ,S) ≤ 5diam (X)

follows by the same reasoning.

5.2.2. Combinatorial Distance Potential. Given A ∈ Att(X ,F) and the correspond-
ing attractor-repeller pair (A,A∗), we can now define our formula for the combi-
natorial distance potential cdpA : X → R, for all ξ ∈ X ,

cdpA(ξ) :=
dW(ξ,A)

dW(ξ,A) + dW(ξ,A∗)
. (17)

We give the following algorithm to compute cdpA.

Algorithm 2 Computing Combinatorial Distance Potential

DistancePotential
Given: A combinatorial attractor-repeller pair (A,A∗).
Output: A distance potential cdpA and also the Dijkstra distance dW(A,A∗)
Realize the weighted graphW corresponding to the grid X .
dW(·,A)← Dijkstra(A,W).
dW(·,A∗)← Dijkstra(A∗,W).
for ξ ∈ X do
cdpA(ξ)← dW(ξ,A)

dW(ξ,A)+dW(ξ,A∗)
end for
α←∞
for ξ ∈ A do
α← min{α, dW(ξ,A∗)}

end for
dW(A,A∗)← α

Proposition 5.5. Algorithm DistancePotential computes the combinatorial distance po-
tential defined by Equation 17. The time and space complexity are O(dN +N logN) and
O(N), respectively, where N = card(X).

Proof. Correctness of the combinatorial distance potential computation follows from
the preceding discussion and the correctness of the computation of dW(A,A∗) fol-
lows from the observation that dW(A,A∗) = minξ∈A dW(ξ,A∗). SinceW will have
approximately (d+1)N edges, the earlier discussion of Dijkstra’s algorithm tells us
that the time complexity will be O(dN + N logN). The space complexity of O(N)

reflects the cost of storing the result, and storing the priority queues.

EFFICIENT COMPUTATION OF LYAPUNOV FUNCTIONS FOR MORSE DECOMPOSITIONS 23

5.2.3. Combinatorial Distance Potential Star. Finally we compute a combinatorial
distance potential star cν∗A : X → R in the same manner as ν∗A is defined in (14),
namely

cν∗A(ξ) := max{cdpA(η) | η is reachable from ξ}. (18)

To this end we provide the following algorithm.

Algorithm 3 Computing Distance Potential Star

Global: The topologically sorted list
S of the strongly connected compo-
nents

DistancePotentialStar
Given: An attractor-repeller pair
(A,A∗)
Output: The combinatorial distance
potential star as defined in Equation
(18) and also the Dijkstra distance
dW(A,A∗).

(cdpA, dW(A,A∗))← DistancePoten-
tial(A,A∗)
cν∗A ← cdpA
for S ∈ S (in reverse order) do

if S /∈ A ∪A∗ then
Let ξ ∈ X such that S = {ξ}.
for η ∈ F(ξ) do
cν∗A(ξ)← max{cν∗A(ξ), cν∗A(η)}

end for
end if

end for

Proposition 5.6. The algorithm DistancePotentialStar correctly computes the combi-
natorial distance potential star defined in Equation (18), with time complexity O(dN +

N logN +E) and space complexity O(N). Here N is the number of grid elements and E
is the number of edges in the directed graph corresponding to the combinatorial map F of
Equation (5).

Proof. The correctness of the algorithm follows from the observation that cν∗P sat-
isfies the following recursive relation:

cν∗A(ξ) = max{cdpA(ξ),max{cν∗A(η) | η ∈ F(ξ)}}.

Iterating through S \ (A ∪ A∗), which consists only of singleton components, in
a reverse topological sort ensures that cν∗A(η) is always computed before cν∗A(ξ)

whenever η ∈ F(ξ), so this recursive definition is properly implemented. Propo-
sition 5.5 gives us a baseline resource usage of O(dN + N logN) time and O(N)

space. The time cost apart from this is proportional to the number of adjacencies
examined, and no adjacency ξ 7→ η is ever examined more than once; this results
in the extra O(E) term in the time complexity. The extra space complexity is due
to storage of the result and can be subsumed into the big-oh notation (in fact, the
distance potential can be overwritten). 5.5.

24 A. GOULLET, S. HARKER, W.D. KALIES, D. KASTI, AND K. MISCHAIKOW

5.2.4. Computing Lyapunov functions for attractor-repeller pairs. Finally we replace
cν∗A in formula (15) for VA to obtain the function

cVA(ξ) =

0 if ξ ∈ A

1 if ξ ∈ A∗
1
2cν
∗
A(ξ) + 1

2 maxη∈F(ξ) cVA(η) otherwise,

(19)

which approximates VA. Lemma 3.2 in [3] implies that cVA is a combinatorial
Lyapunov function for (A,A∗). The following algorithm computes cVA.

Algorithm 4 Computing Combinatorial Lyapunov Function Summand

Global: A topologically sorted list
S of the strongly connected compo-
nents.
LyapunovSummand
Given: An attractor-repeller pair
(A,A∗)
Output: The combinatorial Lyapunov
summand as defined in Equation
(19) and also the Dijkstra distance
dW(A,A∗).
(cν∗A, dW(A,A∗)) ← DistancePoten-
tialStar(A,A∗)
for ξ ∈ X do

cVA(ξ)← 0

end for
for ξ ∈ A∗ do

cVA(ξ)← 1

end for
for S ∈ S (in reverse order) do

if S /∈ A ∪A∗ then
Let ξ ∈ X such that S = {ξ}.
α← 0

for η ∈ F(ξ) do
α← max{α,VA(η)}

end for
cVA(ξ)← 1

2 (cν∗A(ξ) + α)

end if
end for

Proposition 5.7. Algorithm LyapunovSummand correctly computes the combinatorial
Lyapunov function cVA for the attractor-repeller pair (A,A∗) defined in Equation (19) in
O(dN +N logN +E) time and O(N) space, where N is the number of grid elements and

E :=
∑
ξ∈X

card(F(ξ))

is the number of edges in the directed graph corresponding to the combinatorial map F of
Equation (5).

Proof. The proof is essentially the same reasoning as the proof of Proposition 5.6;
we see that iterating through singleton strongly connected components in reverse
topological sort correctly implements the recursive definition of Equation (19).

5.3. Computing Lyapunov functions for Morse decompositions. Our goal is to
compute combinatorial Lyapunov functions for F , i.e. piecewise-constant, combi-
natorial Lyapunov functions that approximate continuous Lyapunov functions for

EFFICIENT COMPUTATION OF LYAPUNOV FUNCTIONS FOR MORSE DECOMPOSITIONS 25

f . Given an outer approximation F , the recurrent set R has finitely many recur-
rent components M. Corollary 4.2 in [16] implies that f is gradient-like on the
complement of |R|, and the realizations of the recurrent components are isolating
neighborhoods for a Morse decomposition for f . This means that the maximum
amount of recurrence/gradient-like information we can obtain from F is a Morse
decomposition M with partial order (P,≤).

Theorem 5.2 provides a formula for a Lyapunov function for a Morse decom-
position as a weighted average of Lyapunov functions for attractor-repeller pairs
generated from the join-irreducible attractors. This leads us to define the following
piecewise-constant, combinatorial Lyapunov function for F

cV =
∑
p∈P

βp cVp (20)

where the weights βp are defined according to the distance from the attractor Ap
to its dual repeller A∗p. Specifically,

w =
∑
p∈P

dW(Ap,A∗p) and βp = dW(Ap,A∗p)/w. (21)

In the next section we discuss the reasoning behind this specific choice of weights
and describe how well these functions approximate continuous Lyapunov func-
tions for f . The following algorithm computes the final combinatorial Lyapunov
function cV .

26 A. GOULLET, S. HARKER, W.D. KALIES, D. KASTI, AND K. MISCHAIKOW

Algorithm 5 Computing Combinatorial Lyapunov Function

Global variables:
A listM of the combinatorial recurrent components.

ComputeLyapunov
w ← 0.
for ξ ∈ X do
cV(ξ)← 0.

end for
for M ∈M do
A ← ComputeAttractor(M).
A∗ ← ComputeDualRepeller(A).
(cVA, dW(A,A∗))← LyapunovSummand(A,A∗).
w ← w + dW(A,A∗)
for ξ ∈ X do
cV(ξ)← cV(ξ) + dW(A,A∗) · cVA(ξ)

end for
end for
for ξ ∈ X do
cV(ξ)← cV(ξ)/w

end for

Theorem 5.8. Given the recurrent components M = {M(p) | p ∈ P}, the algorithm
ComputeLyapunov correctly computes the combinatorial Lyapunov function defined in
Equation (20), with time complexity

O(card(P) · (dN +N logN + E))

and space complexity O(N), where N is the number of grid elements and

E :=
∑
ξ∈X

card(F(ξ))

is the number of edges in the directed graph corresponding to the combinatorial map F of
Equation (5).

Proof. Both correctness and the complexity estimates follow immediately from Equa-
tion (20) and Propositions 4.2 and 5.7.

5.4. Convergence of approximate Lyapunov functions. We want to show that the
combinatorial Lyapunov function given by the formula (20) with weights βp speci-
fied in (21) is a good approximation to an appropriate continuous Lyapunov func-
tion for f , if the grid size is sufficiently small. In particular, we would like to show
that for a sequence of outer approximations Fn : Xn−→→Xn with diam (Xn) → 0 as

EFFICIENT COMPUTATION OF LYAPUNOV FUNCTIONS FOR MORSE DECOMPOSITIONS 27

n→∞, the corresponding functions cVn converge uniformly to a continuous Lya-
punov function for f .

First, it should be clear that without any further assumptions about how well
Fn approximates the images of f , nothing can be said. For the purposes of clarity,
we consider the minimal outer approximation of f on Xn given by

(Fo)n(ξ) = {η ∈ Xn | η ∩ f(ξ) 6= ∅}.

Clearly, this outer approximation is not attainable in practical computations, but
the notion of a convergent sequence of outer approximations is developed in [18].
We do not include the details of such convergent sequences here, however the
results that we obtain for sequences of minimal outer approximations will also
hold for convergent sequences of outer approximations using Proposition 5.4 and
Corollary 5.6 in [18].

We begin by considering Lyapunov functions for attractor-repeller pairs. Propo-
sition 5.5 in [16] establishes a one-to-one correspondence between well-separated
attractor-repeller pairs for f and attractor-repeller pairs for the minimal outer ap-
proximationFo, and Corollary 5.6 in [18] establishes the same result for convergent
sequences of outer approximations. Specifically, for c > 0 let

Qc := {A ∈ Att(X, f) | dist (A,A∗) ≥ c} .

Let ε < min {dist (A,A∗)/2 | A ∈ Qc}. If diam (X) is sufficiently small, then for
each A ∈ Qc there exists a unique A ∈ Att(X ,F) with the property that

A ⊂ |A| ⊂ Bε(A) and A∗ ⊂ |A∗| ⊂ Bε(A∗). (22)

We denote this correspondence by Π: Qc → Att(X ,F). This leads to the following
theorem.

Theorem 5.9. If An is a sequence of attractors arising from a convergent sequence of
outer approximations Fn : Xn → Xn with diam (Xn)→ 0 as n→∞, and there exists an
attractor A for f such that (|An|, |A∗n|) → (A,A∗) in the Hausdorff metric, then cVAn

converges uniformly to VA defined in equation (12). Moreover, given A such a sequence
An always exists.

Proof. Corollary 5.4 states that the combinatorial distance dW(ξ,S) and the geo-
metric, Manhattan distance d(xξ, |S|) satisfy

|dW(ξ,S)− d(xξ, |S|)| < 5diam (Xn).

Lemma 3.7 of [3] establishes that the distance potentials dpAn
and cdpAn

defined in
equations (13) and (17) respectively, as well as the functions VAn

and cVAn
defined

in equations (15) and (19) respectively, satisfy similar estimates so that there exists
C > 0 such that

|dpAn
(ξ)− cdpAn

(ξ)| ≤ Cdiam (Xn) and |VAn(ξ)− cVAn(ξ)| ≤ Cdiam (Xn).

28 A. GOULLET, S. HARKER, W.D. KALIES, D. KASTI, AND K. MISCHAIKOW

Now, [3, Theorem 3.3] establishes that cVAn converges uniformly to VA. Fur-
thermore, [16, Theorem 5.5] and Corollary 5.6 in [18, Corollary 5.6] establishes that
given (A,A∗) the sequence (An,A∗n) = (Πn(A),Πn(A)∗) converges to (A,A∗) in
the Hausdorff metric using (22).

When Π maps join-irreducible attractors onto combinatorial join-irreducible at-
tractors, then we can give a result following from Theorems 5.2 and 5.9 that our
algorithms compute a combinatorial Lyapunov function approximating Equation
(10). In fact, the weighting of the terms allows us to be able to do somewhat better,
and relax this to assuming that Π maps to join-irreducible combinatorial attractors,
but is not necessarily onto.

In general, however, Π need not map only to join-irreducible combinatorial at-
tractors. This can happen when there are “spurious” combinatorial Morse sets (i.e.
recurrent components for which there is an empty maximal invariant set). In this
case we do not give a convergence result. However, we will show that it is pos-
sible to give an a-posteriori analysis to establish that this was not the case for the
computational results presented in this paper. We sketch some ideas for how to
handle the general situation at the end of this section.

Theorem 5.10. Suppose Att(X, f) is finite and let M be the Morse decomposition for
f ordered by (P,≤) with corresponding lattice of attractors A = Att(X, f). Let c =

min {dist (A,A∗) | A ∈ A}. If diam (X) is sufficiently small, and F is the minimal outer
approximation, then all attractors in A can be resolved by the correspondence Π. Suppose
that for every join-irreducible attractor A for F the attractor ω(|A|) is join-irreducible
in A. Further suppose that for every join-irreducible Ap ∈ Att(X, f) the corresponding
attractor Π(Ap) ∈ Att(X ,F) is join-irreducible. Then there is a Lyapunov function V for
(X,M,P,≤) such that ‖cV − V ‖∞ → 0 as diam (X)→ 0.

Proof. [16, Proposition 5.5] and [18, Corollary 5.6] imply that for diam (X) small
enough, Π is surjective. By [18, Proposition 4.7] the map from Att(X ,F) to Att(X, f)

given by A 7→ ω(|A|) is well-defined. Moreover, Att(X ,F) has a natural lattice
structure and the map ω(| · |) is a lattice homomorphism by [18, Proposition 4.13].
Since Π is surjective, ω(| · |) is surjective onto A = Att(X, f).

By Theorem 5.9 for each p ∈ P the combinatorial Lyapunov function cVΠ(Ap) de-
fined in Equation (19) converges uniformly to the attractor-repeller pair Lyapunov
function VAp defined in Equation (12). Suppose the recurrent components of F are
labeled by the poset R. Recall that the combinatorial Lyapunov function for the
recurrent components of F is given by Equation (20)

cV =
∑
r∈R

βr cVAr

where the weights are defined in Equation (21). Thus we define

V =
∑
p∈P

γpVAp

EFFICIENT COMPUTATION OF LYAPUNOV FUNCTIONS FOR MORSE DECOMPOSITIONS 29

with weights defined by

z =
∑
p∈P

dist (Ap, A
∗
p) and γp = dist (Ap, A

∗
p)/z.

Theorem 5.2 implies that V is a continuous Lyapunov function for (X,M,P, f).
To simplify notation we will abuse notation and write r = Π(p) when Π(Ap) =

Ar. Now we can reorder the sum so that

cV =
∑
p∈P

βΠ(p) cVAΠ(p)
+

∑
r/∈Π(P)

βr cVAr
.

Then

‖cV − V ‖∞ ≤
∑
p∈P

‖βΠ(p) cVAΠ(p)
− γpVAp

‖∞ +
∑

r/∈Π(P)

βr.

Now consider r /∈ Π(P). By hypothesis, the attractor Ap = ω(|Ar|) is join-
irreducible. However, r 6= Π(p). Since (AΠ(p), A

∗
Π(p)) is the unique attractor re-

peller pair that satisfies equation (22), we must have

Bε(A) ∩ |A∗| 6= ∅ or |A| ∩Bε(A∗) 6= ∅,

so that dist (Ar,A∗r)→ 0 as diam (X)→ 0. Since as diam (X)→ 0 we have βΠ(p) →
γp, VAΠ(p)

converges to VAp uniformly, and βr → 0 for r /∈ Π(P) by Equation (21),
we have ‖cV − V ‖∞ → 0 as diam (X)→ 0.

Now we apply Theorem 5.10 to the situation that occurs in the computations
of Section 6. As in the proof of Theorem 5.10, the map ω(| · |) is a lattice homo-
morphism from Att(X ,F) to Att(X, f). For each recurrent componentR of F with
a nontrivial Conley index, the attractor Γ+(R) maps to a distinct attractor under
ω(| · |). If we assume that Att(X, f) is finite, and the grid size is small enough so
that all join-irreducible attractors can be resolved by F , i.e. Π maps onto Att(X ,F),
then ω(| · |) is also surjective. If every recurrent component is nontrivial, i.e. has a
nonempty maximal invariant set, then ω(|·|) is an isomorphism and the hypotheses
of Theorem 5.10 are satisfied. This situation occurs in both computations in Sec-
tion 6, because the Conley indices of the realizations of the recurrent components
are all nontrivial, see Figures 2 and 4.

Finally we briefly comment on how we might attain the goal of an algorithm
that both efficient in the number of attractor-repeller pairs that are used and also
satisfy a convergence result based only on the information contained in F without
any a priori information about the underlying system. There are two issues to be
resolved: (1) there can be infinitely many attractors for f , and (2) one or more of
the join-irreducible attractors for f that are necessary for the computation are not
well-approximated by any join-irreducible attractor for F .

The first issue we might resolve by choosing some fixed Morse decomposition,
which we may determine at some chosen level of resolution, and at all finer reso-
lutions grouping components together to reflect this chosen Morse decomposition.

30 A. GOULLET, S. HARKER, W.D. KALIES, D. KASTI, AND K. MISCHAIKOW

The second issue is due to spurious recurrent components, and could be handled
by a strategy of grouping components as well. In this case we would group com-
ponents together so that the distances between combinatorial attractors and their
dual repellers of the join irreducible pairs were not too small. Pursuing these two
strategies both computationally and theoretically will be the subject of future work.

6. Implementation and Results. The above algorithms have been implemented
and are freely available in the C++ software package Conley-Morse-Database
[4] [12]. In this section we discuss the performance of the Succinct Grid and Pointer
Grid described in Section 2 and computational results for Lyapunov functions for
two different dynamical models. We also report a breakdown of the memory usage
among subcomponents of our algorithms and discuss scalability prospects.

6.1. Performance of Succinct Grid vs Pointer Grid. The Conley-Morse-Database
software provides C++ classes PointerGrid and SuccinctGrid implementing
both pointer-based and succinct-tree based grids described in Section 2. SuccinctGrid
makes heavy use of the software package SDSL (Succinct Data Structures Library)
[10] which provides a C++ library of succinct data structures including succinct
trees and rank-select structures. PointerGrid, on the other hand, is a simple
pointer-based scheme implemented according to the description given earlier. We
measure that the succinct-tree based grid implementation achieves an efficiency of
4.58 bits per grid element, which represents a 180-fold increase in space efficiency
compared to the pointer grid method we have implemented, which requires 104

bytes per grid element. This is more than the asymptotically achievable 3 bits per
grid element (or 1.5 bits per binary tree node – see the discussion at the end of Sec-
tion 2.2) due to the o(N) usage of the succinct data structures taking approximately
34% of the space in the example we measured. There is the expected time/space
trade-off: SuccinctGrid is the slower alternative by a factor of 3. We refer the reader
to Table 2 below.

6.2. Computational Examples. We have tested our algorithms on two examples,
the first being two-dimensional and the second being three-dimensional. Both ex-
amples computed in a few hours using a single core on a Macbook Pro laptop with
8GB of RAM. For each example we present a Conley-Morse graph, a visualization
of the combinatorial Morse sets, and a visualization of the computed combinatorial
Lyapunov function.

6.2.1. Two-dimensional overcompensatory Leslie Model. The first example is of the
map f : R2 → R2 given by[

x1

x2

]
7→

[
(θ1x1 + θ2x2)e−φ(x1+x2)

px1

]
, (23)

where we choose parameters θ1 = 20.0, θ2 = 20.0, φ = 0.1, and p = 0.7. The
phase space region was taken to be X = [0, 74] × [0, 52]. This model was first

EFFICIENT COMPUTATION OF LYAPUNOV FUNCTIONS FOR MORSE DECOMPOSITIONS 31

analyzed in Ugarcovici and Weiss [25]. Later in [1] the multiparameter system
was examined computationally via Conley-Morse theory. Here we compute the
Conley-Morse graph using the program SingleCMG and a combinatorial Lya-
punov function using Lyapunov. SingleCMG and Lyapunov are both programs
in the Conley-Morse-Database project.

Resource requirements are described in Table 2 below. We briefly discuss the
results. The Conley-Morse graph in Figure 2 has five nodes, corresponding to five
combinatorial Morse sets that were found. The labels on these nodes tell us the
Conley index information. We will not discuss how these are arrived at here, cf. [1].
We content ourselves with describing intuitively what they indicate. To this end
we provide the following table. Note that if an invariant set has a certain Conley
index, this does not imply that the invariant set is the set indicated in the table.
For example, in the model (23), the invariant set with the Conley index of a stable
period-3 orbit is actually a 3-part chaotic attractor.

TABLE 1. Conley Index.

Label Conley Index

(Trivial, Trivial, Trivial) A trivial index– Conley index of the empty set
(x− 1, Trivial, Trivial) Conley index of a stable fixed point
(Trivial, x− 1, Trivial) Conley index of a saddle point
(Trivial, Trivial, x− 1) Conley index of an unstable fixed point
(x− 1, x− 1, Trivial) Conley index of a stable invariant circle

(xT − 1, Trivial, Trivial) Conley index of a stable period-T orbit
(Trivial, xT − 1, Trivial) Conley index of an unstable period-T orbit

In the phase space picture we can easily see the Morse sets with the Conley
indices of an invariant circle and unstable fixed point. The Morse sets with Con-
ley indices of an unstable period-3 orbit and a stable period-3 orbit are small at
this resolution so they are highlighted in blue and purple respectively. The Morse
set with the saddle-point Conley index corresponds to the origin in the lower left
corner, highlighted in red.

We remark that to compute Conley indices of combinatorial Morse sets on the
boundary of phase space requires that we extend the phase space slightly into the
negative numbers. If we do not, the boundary will cause trivial Conley indices to
appear, which we consider an artifact.

In Figure 3 we see what we should expect to see: the combinatorial Lyapunov
function is constant on Morse sets, and takes higher values on the Morse sets which
are higher in the Conley-Morse graph. In this figure white is the highest value and
black is the lowest value.

32 A. GOULLET, S. HARKER, W.D. KALIES, D. KASTI, AND K. MISCHAIKOW

FIGURE 2. Conley-Morse Graph and a depiction of Morse Sets for
the overcompensatory Leslie model of Equation (23) as computed
by the SingleCMG program in the Conley-Morse-Database

software package.

EFFICIENT COMPUTATION OF LYAPUNOV FUNCTIONS FOR MORSE DECOMPOSITIONS 33

FIGURE 3. Combinatorial Lyapunov function for overcompen-
satory Leslie model of Equation (23) as computed by the
Lyapunov program in the Conley-Morse-Database software
package. The greyscale intensity represents the value of the com-
puted combinatorial Lyapunov function with white correspond-
ing to the highest vale and black the lowest value.

6.2.2. Three-dimensional Leslie/Gower Competition Model. Our second example is a
three-dimensional model considered by Cushing et. al. [7]. The map is given by

 x1

x2

x3

 7→
 Ax2e

−(Bx2+Cx3)

Dx1

Ex3e
−(Fx1+Gx3)

 , (24)

with parameters A = 5.0, B = 0.1, C = 0.11, D = 0.8, E = 5.0, F = 0.12, G = 0.1.
The phase space region was taken to be X = [0, 20]3. We present our results for
this model in Figure 5 and Figure 4. Supplementary materials are available for
visualizing the 3D combinatorial Lyapunov function [22].

34 A. GOULLET, S. HARKER, W.D. KALIES, D. KASTI, AND K. MISCHAIKOW

FIGURE 4. Conley-Morse Graph and a depiction of Morse Sets
for the Leslie/Gower Model of Equation (24) as computed by the
SingleCMG program in the Conley-Morse-Database software
package.

REFERENCES 35

FIGURE 5. Lyapunov function contours for Leslie/Gower Model
of Equation (24) as computed by the Lyapunov program in the
Conley-Morse-Database software package.

6.3. Scalability. Our space requirements have been reduced with the succinct grid
data structure in Section 2.2 and a space efficient technique for computing the
strongly connected components, see [11]. We present these resource usage statis-
tics for the computation on the overcompensatory Leslie model of Equation (23) in
Table 2.

From this table we observe that had we stored adjacency lists and used pointer-
based grids we would have required 3748 + 1398 = 5146 MB. Dispensing with
adjacency list requirements, by itself, allows us to bring this down to 3748 MB. In
combination with the succinct grid data structure our space requirements are fur-
ther brought down to 1704 MB. Thus, we have demonstrated a factor 3 of scaling
in this paper.

However, we note that we have reduced memory requirements of objects that
require random access patterns, and thus by necessity must be in internal mem-
ory. Other memory requirements remain, but it appears that many, if not all of
them, can be relegated to external memory. See [26] for a survey of external mem-
ory algorithms and data structures. For example, the Dijkstra algorithm’s priority
queue can be implemented in external memory [2]. This suggests we may have
opened the door to orders-of-magnitude scaling via such methods. We leave such
an investigation for future work.

References.

36 REFERENCES

TABLE 2. Resource usage for Lyapunov calculation of overcom-
pensatory Leslie Model.

Resource PointerGrid SuccinctGrid

Time (SingleCMG) 597s 1564s
Time (Lyapunov) 5157s 17539s
Grid memory 2054.862424 MB 11.316949 MB
SCC memory 538.803185 MB same
Lyapunov function memory 316.132656 MB same
Potential function memory 158.066328 MB same
Attractor/Dual Repeller memory 4.939572 MB same
Dijkstra memory 674.415049 MB same
Total 3748 MB 1704 MB

Grid Elements Graph Size (hypothetical)

19.758292 million 1397.839640 MB

[1] Zin Arai et al. “A database schema for the analysis of global dynamics of
multiparameter systems”. In: SIAM Journal on Applied Dynamical Systems 8.3
(2009), pp. 757–789.

[2] Lars Arge. “The buffer tree: A technique for designing batched external data
structures”. In: Algorithmica 37.1 (2003), pp. 1–24.

[3] H. Ban and W.D. Kalies. “A Computational Approach to Conley’s Decom-
position Theorem”. In: Journal of Computational Nonlinear Dynamics 1 (2006),
pp. 312–319.

[4] Justin Bush et al. “Combinatorial-topological framework for the analysis of
global dynamics”. In: Chaos: An Interdisciplinary Journal of Nonlinear Science
22.4 (2012), p. 047508.

[5] Francisco Claude and Gonzalo Navarro. “Practical rank/select queries over
arbitrary sequences”. In: String Processing and Information Retrieval. Springer.
2009, pp. 176–187.

[6] Charles Conley. Isolated invariant sets and the Morse index. Vol. 38. CBMS Re-
gional Conference Series in Mathematics. American Mathematical Society,
Providence, R.I., 1978, pp. iii+89. ISBN: 0-8218-1688-8.

[7] JM Cushing et al. “Some Discrete Competition Models and the Competitive
Exclusion Principle”. In: Journal of difference Equations and Applications 10.13-
15 (2004), pp. 1139–1151.

[8] Edsger W Dijkstra. “A note on two problems in connexion with graphs”. In:
Numerische mathematik 1.1 (1959), pp. 269–271.

REFERENCES 37

[9] Michael L Fredman and Robert Endre Tarjan. “Fibonacci heaps and their
uses in improved network optimization algorithms”. In: Journal of the ACM
(JACM) 34.3 (1987), pp. 596–615.

[10] Simon Gog et al. “From Theory to Practice: Plug and Play with Succinct Data
Structures”. In: 13th International Symposium on Experimental Algorithms, (SEA
2014). To appear. 2014.

[11] Shaun Harker. Space efficient variants of Tarjan’s Algorithm for strongly con-
nected components. 2014. In Preparation.

[12] Shaun Harker, Arnaud Goullet, et al. Conley-Morse-Database Software Package.
Computational Homology Project (CHomP). 2014. URL: http://chomp.
rutgers.edu/Software.html.

[13] Guy Jacobson. “Space-efficient static trees and graphs”. In: Foundations of
Computer Science, 1989., 30th Annual Symposium on. IEEE. 1989, pp. 549–554.

[14] Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. “Ultra-succinct rep-
resentation of ordered trees with applications”. In: Journal of Computer and
System Sciences 78.2 (2012), pp. 619–631.

[15] Bin Jiang. “I/O-and CPU-optimal recognition of strongly connected compo-
nents”. In: Information Processing Letters 45.3 (1993), pp. 111–115.

[16] W. D. Kalies, K. Mischaikow, and R. C. A. M. VanderVorst. “An algorithmic
approach to chain recurrence”. In: Found. Comput. Math. 5.4 (2005), pp. 409–
449. ISSN: 1615-3375. DOI: 10.1007/s10208-004-0163-9. URL: http:
//dx.doi.org/10.1007/s10208-004-0163-9.

[17] W. D. Kalies, K. Mischaikow, and R. C. A. M. VanderVorst. “Lattice Struc-
tures for Attractors I”. In: Journal of Computational Dynamics (2014). ac-
cepted.

[18] W. D. Kalies, K. Mischaikow, and R. C. A. M. VanderVorst. “Lattice Struc-
tures for Attractors II”. In preparation. 2014.

[19] W. D. Kalies, K. Mischaikow, and R. C. A. M. VanderVorst. “Lattice Struc-
tures for Attractors III”. In preparation. 2014.

[20] J Ian Munro and Venkatesh Raman. “Succinct representation of balanced
parentheses and static trees”. In: SIAM Journal on Computing 31.3 (2001),
pp. 762–776.

[21] R. Clark Robinson. An introduction to dynamical systems—continuous and dis-
crete. Second. Vol. 19. Pure and Applied Undergraduate Texts. American
Mathematical Society, Providence, RI, 2012, pp. xx+733. ISBN: 978-0-8218-
9135-3.

[22] Supplementary Materials. http://chomp.rutgers.edu/Archives/
Lyapunov/SupplementalMaterials.html. 2014.

[23] Andrzej Szymczak. “A combinatorial procedure for finding isolating neigh-
bourhoods and index pairs”. In: Proc. Roy. Soc. Edinburgh Sect. A 127.5 (1997),

http://chomp.rutgers.edu/Software.html
http://chomp.rutgers.edu/Software.html
http://dx.doi.org/10.1007/s10208-004-0163-9
http://dx.doi.org/10.1007/s10208-004-0163-9
http://dx.doi.org/10.1007/s10208-004-0163-9
http://chomp.rutgers.edu/Archives/Lyapunov/SupplementalMaterials.html
http://chomp.rutgers.edu/Archives/Lyapunov/SupplementalMaterials.html

38 REFERENCES

pp. 1075–1088. ISSN: 0308-2105. DOI: 10.1017/S0308210500026901. URL:
http://dx.doi.org/10.1017/S0308210500026901.

[24] Robert Tarjan. “Depth-first search and linear graph algorithms”. In: SIAM
journal on computing 1.2 (1972), pp. 146–160.

[25] Ilie Ugarcovici and Howard Weiss. “Chaotic dynamics of a nonlinear density
dependent population model”. In: Nonlinearity 17.5 (2004), p. 1689.

[26] Jeffrey Scott Vitter. “Algorithms and data structures for external memory”.
In: Foundations and Trends R© in Theoretical Computer Science 2.4 (2008), pp. 305–
474.

E-mail address: arnaud.goullet@gmail.com
E-mail address: sharker@math.rutgers.edu
E-mail address: dkasti@my.fau.edu
E-mail address: wkalies@fau.edu
E-mail address: mischaik@math.rutgers.edu

http://dx.doi.org/10.1017/S0308210500026901
http://dx.doi.org/10.1017/S0308210500026901
mailto:arnaud.goullet@gmail.com
mailto:sharker@math.rutgers.edu
mailto:dkasti@my.fau.edu
mailto:wkalies@fau.edu
mailto:mischaik@math.rutgers.edu

	1. Introduction
	2. Combinatorial representation of dynamics
	2.1. Binary Tree Based Grids
	2.2. Succinct Binary Tree Grid Implementation

	3. Extracting recurrent and gradient-like dynamics
	4. Attractor-repeller pairs
	5. Lyapunov functions
	5.1. A Lyapunov function for Morse decompositions
	5.2. Approximating Lyapunov functions for attractor-repeller pairs
	5.3. Computing Lyapunov functions for Morse decompositions
	5.4. Convergence of approximate Lyapunov functions

	6. Implementation and Results
	6.1. Performance of Succinct Grid vs Pointer Grid
	6.2. Computational Examples
	6.3. Scalability

	References

