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Abstract

Simple point detection is an important task for several problems in discrete geometry, such as topology
preserving thinning in image processing to compute discrete skeletons. In this paper, the approach to
simple point detection is based on techniques from cubical homology, a framework ideally suited for
problems in image processing. A (d-dimensional) unitary cube (for a d-dimensional digital image) is
associated with every discrete picture element, instead of a point in E d (the d-dimensional Euclidean
space) as has been done previously. A simple point in this setting then refers to the removal of a unitary
cube without changing the topology of the cubical complex induced by the digital image. The main result
is a characterization of a simple point p (i.e., simple unitary cube) in terms of the homology groups of
the (3d − 1) neighborhood of p for arbitrary, finite dimensions d.
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1On the Detection of Simple Points in Higher
Dimensions Using Cubical Homology

I. INTRODUCTION

In the context of digital topology discrete data sets are associated with geometric objects such as two

dimensional images, three dimensional volumes, etc. Typically the data set is obtained by assigning

to each pixel, voxel, tetrapus, or any analogous higher-dimensional object a point, e.g. the center

point. Connectivity, and in general topology, is assigned to this set of points by applying a particular

neighborhood structure. The choice of neighborhood structure determines which topological properties

carry over from the continuous to discrete settings. For example, when looking at a discrete image

composed of pixels, not all neighborhood definitions (for the foreground and the background) will allow

for a discrete equivalent to the Jordan curve theorem.

Given a particular set of points P and fixed neighborhood structure, one can ask what happens to the

induced topology when one of the points p ∈ P is removed. A point p is simple in P, if the topology

associated with P is equivalent to the topology associated with P \{p} (a precise definition is presented

below). Detecting simple points is of crucial importance in thinning applications for example, where a

discrete representation of an object gets reduced to its topologically equivalent skeleton. In the simplest

(continuous) Euclidean case, the skeleton or medial axis (in the sense of Blum [1]) is the set of shock

points emanating from an inward moving object boundary traveling with unit speed. If the skeleton is

augmented with arrival time information perfect boundary reconstruction can be achieved. Skeletons can

for example be used as shape descriptors for object recognition, for object compression, to find centerlines

of objects, etc. See [2], [3] for a review of skeletonization algorithms.

Given its importance it is not surprising that simple point detection has been studied in the context



of digital topology. Since most applications in image processing deal with two- or three dimensional

images, identification of simple points in this setting is well understood. However, three dimensional image

sequences (e.g., of a beating heart) demand simple point detection algorithms for four-dimensional spaces

(see [4] for a four-dimensional simple point result). Furthermore, problems for higher space dimensions

are easily conceivable: the recent work by Han et al. [5] requires the detection of simple points during

a level set evolution to preserve the topology of an implicitly evolving surface; and the removal of

simple points is essential for the efficient implementation of new dimension independent algorithms for

computing the homology of maps [6].

The complexity of simple point detection increases with the dimension of the space. If one applies the

neighborhood structure known as (3d − 1)-connectivity, then the number of elements in a neighborhood

increases exponentially with dimension d. Furthermore, in the case of thinning, simple point decisions

often need to be made multiple times for many elements of the data set (removing one simple point may

create a new simple point), resulting in a large number of decisions to be taken. Thus, computationally

efficient and dimension-independent algorithms for simple point detection are clearly necessary.

This paper develops a characterization of a simple point p of a discrete d-dimensional, binary dataset

in terms of the homology groups of the cubical complex induced by the (3d − 1)-neighborhood of p. In

contrast to most previous approaches this characterization is dimension-independent and thus facilitates the

design of dimension-independent algorithms (for an alternative approach see Pilarczyk [7]). Furthermore,

computationally efficient algorithms to compute the resulting simple point condition exist and are freely

available. Our approach is most closely related to that of Tourlakis and Mylopoulos [8], [9], but associates

a d-dimensional unitary cube (for a d-dimensional digital image) with every discrete picture element,

instead of a point in the d-dimensional Euclidean space E d. The simple point detection scheme proposed

in this paper makes use of cubical homology; for a recent treatment see [10].
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We now outline the contents of this note. Section II gives proposed simple point conditions whose

proofs are given in the Appendix . Section III relates the approach presented in this paper to previous

work and compares it in particular to the approach by Tourlakis and Mylopoulos [8], [9]. Our approach

is less general, but better suited for the processing of digital datasets. Section IV summarizes the salient

points of our methodology and makes some conclusions.

II. DETECTING SIMPLE POINTS BY CUBICAL HOMOLOGY

This section presents the main results of this paper. We will also aim at giving some intuition for these

simple point conditions. For clarity we assume that a d-dimensional image Id is composed of unitary

d-dimensional cubes, i.e. translates of [0, 1]d ⊂ Rd, whose center p ∈ Zd has integer coordinates. Note

that the size of the cubes plays no role in determining the topology of the image.

Define the (3d − 1)-neighborhood and the (2d)-neighborhood of p as

N3d−1(p) = {p ∈ Zd : max
1≤i≤d, i∈N

|pi − pi| ≤ 1},

N2d(p) = {p ∈ Zd :
∑

1≤i≤d, i∈N
|pi − pi| ≤ 1}

respectively, where pi is the i-th coordinate of p. Two points x and y are n-connected if x ∈ Nn(y).

Definition 1 (Cubical Neighborhood)

Let P ⊂ Zd. The cubical neighborhood CN(p) of a point p ∈ P is the union of the d-dimensional

unitary cubes associated with the points in N3d−1(p) \ p, i.e.,

CN(p) =
⋃

q∈(N3d−1(p)∩P)\p
C(q).

Figure (1) illustrates the different neighborhood concepts in two dimensions

As is indicated in the Introduction, a point is simple if its removal results in an equivalent topological

space. Thus the notion of simple is directly tied to the equivalence relation that is being imposed on the
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p

(a) 4-neighborhood of p.

p

(b) 8-neighborhood of p.

p

(c) Cubical neighborhood
CN(p) of p

Fig. 1. Two-dimensional neighborhoods.

topological space. At first glance it may appear that being homeomorphic is the most natural equivalence

relation. However, this is an extremely restrictive form of equivalence and hence difficult to verify.

Furthermore, it is unnecessarily strong; for example, an object is not homeomorphic to its skeleton or

medial axis. This suggests the following definition.

Definition 2 (Homotopy-Simple Point)

Let P ⊂ Zd. Let

P :=
⋃

q∈P
C(q) and P ′ :=

⋃

q∈P\{p}

C(q).

A point p is homotopy-simple if P is homotopy equivalent to P ′.

Planar examples such as those of Figures (2) and (3) suggest that p is a homotopy-simple point if and

only if CN(p) is contractible (i.e. homotopic) to a single point. While in low dimensions this condition

is easy to visualize, our goal is to provide an algorithm for the verification of simple points and thus we

need a reformulation that is amenable to computation. This can be accomplished using algebraic topology.

While homotopy groups provide an algebraic means of determining homotopy type, unfortunately they

are notoriously difficult to compute. In contrast, homology groups are effectively computable. Homology

assigns to each topological space X a sequence of abelian groups, H k(X), k = 0, 1, 2, . . . , called

homology groups.

4



Homology can be computed by decomposing the space into a finite number of units. In the traditional

simplicial homology, these units are simplices, a formalization of the notion of triangulation. In the cubical

homology these units are pixels/voxels and their respective vertices, edges and higher-dimensional faces.

Cubical homology is ideally suited for digital images, due to its ability to handle d-dimensional cubes

directly. Whereas simplicial homology is by now a standard tool of algebraic topology [11], the direct

application of cubical homology is much more recent [10], [12].

Definition 3 (Homology-Simple Point)

Let P ⊂ Zd. Let

P :=
⋃

q∈P
C(q) and P ′ :=

⋃

q∈P\{p}

C(q).

A point p is homology-simple if Hk(P ) ∼= Hk(P ′) for all k ≥ 0 where the isomorphisms are induced by

inclusion.

It is important to note that if two spaces are homotopy equivalent, then they have the same homology

groups; however the converse need not be true. Thus, a homology-simple point is, in general, a weaker

concept than a homotopy-simple point. Nevertheless, as we shall demonstrate, for low dimensional

settings, i.e. P ⊂ Zd where d ≤ 3 the two concepts coincide.

We begin with a dimension independent result.

Theorem 1 (Homology-Simple Point)

A point p is a homology-simple point in P if and only if its cubical neighborhood CN(p) is acyclic;

that is

Hk(CN(p)) ∼=






Z if k = 0,

0 if k ≥ 1.

The proof is straightforward (it follows from [6, Lemma 7.1] and [7, Lemma 9]), however for the sake
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(a) Original cubical complex.

(b) Cubical complex with removed center cube.

Fig. 2. Collapsing a cubical complex. The cyclic case. β0 = 1, β1 = 1. The point is not simple.
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(a) Original cubical complex.

(b) Cubical complex with removed center cube.

Fig. 3. Collapsing a cubical complex. The acyclic case. β0 = 1, β1 = 0. The point is simple.
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of completeness we include it in the Appendix .

A classical result due to H. Poincaré implies that there exist cubical neighborhoods CN(p) which are

acyclic, but not contractible. Thus, this result is insufficient to guarantee that a homology-simple point

is a homotopy-simple point.

A homology group Hk(X) is torsion-free if Hk(X) ∼= Zβk . In this case the homology group is

completely described by its rank which is referred to as the k-th Betti number and denoted by βk(X).

The Betti numbers provide considerable geometric information. For example, given a three-dimensional

image data, there are at most three nontrivial homology groupsH0, H1 and H2. The number of connected

components, tunnels, and voids present in the image are given by the Betti numbers β 0, β1 and β2.

Theorem 2 (Betti Number Characterization of Simple Point)

Let p ∈ P ⊂ Rd and assume d ≤ 4. A point p is a homology-simple point in P if and only if

βk(CN(p)) =






1 if k = 0,

0 if k ≥ 1.

Proof: Let d = 4 and assume that C = [0, 1]4 is the elementary cube associated with p ∈ P ⊂ R4.

Let X := CN(p) ∩ C . It is straightforward though technical to check that X is homotopy equivalent

to CN(p). Observe that X is a cubical set contained in the boundary of [0, 1]4. Since the boundary of

[0, 1]4 is homeomorphic to S3, the unit sphere in R4, H∗(X) is torsion free [13]. Thus, the hypothesis

of the theorem is equivalent to the acyclicity of X. Analogous arguments hold for d < 4.

Real projective space RP 2 provides an example of a topological space whose homology is not torsion

free, and hence, not completely described by its Betti numbers. RP 2 can be expressed as a simplicial

complex that consists of 10 triangles, 15 edges, and 6 vertices. This implies, by [10, Theorem 11.17] that
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it can be represented as a cubical complex in the boundary of [0, 1]5 ⊂ R5. In particular, homology-simple

points for P ⊂ Zd cannot be characterized by Betti numbers for d ≥ 5. Thus, the previous theorem is

sharp.

Theorem 3 (Homotopy-Simple Point)

Let p ∈ P ⊂ Rd and assume d ≤ 3. A point p is a homotopy-simple point in P if and only if

βk(CN(p)) =






1 if k = 0,

0 if k ≥ 1.

Again, the proof of this result is straightforward but rather technical and appears in the Appendix .

As is suggested above, at least in lower dimensional spaces, Betti numbers and hence homology groups

correspond to intuitive geometric concepts like the number of connected components, the number of loops,

or the number of enclosed cavities. Thus, having a simple point characterization in terms of homology

groups is also useful for applications where topology does not necessarily need to be preserved, i.e. it is

relatively straightforward to augment the simple point condition with additional rules based on homology

groups to allow for meaningful non-topology-preserving thinning (e.g. to always allow the thinning to a

line without the need for dealing with complicated special cases).

III. RELATION TO PREVIOUS WORK

Many approaches for simple point detection have been proposed [14]–[16]. While the method in this

paper works on the cubical level, many previous approaches work on the point level; see Figure (4) for

an illustration.

Simple point algorithms have been based on connected component analysis, computation of Euler

characteristics, or template matching, to name a few of the most popular methods. Tabulating simple
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(a) One point per pixel be-
fore removal of the center
pixel.

(b) One point per pixel after
removal of the center pixel.

(c) One unitary cube per
pixel before removal of the
center pixel.

(d) One unitary cube per
pixel after removal of the
center pixel.

Fig. 4. Removing a pixel in a two-dimensional digital image. Illustration of the point and the unitary cube based approaches.

point configurations is prohibitive in higher dimensions. For a four-dimensional cube there are already

280 possible neighborhood configurations. Many simple point detection approaches are not dimension

independent. For example approaches relying on the graph induced by the points describing a discrete

dataset and their neighborhood structure. While the dimensional dependency of a simple point condition

may be acceptable for computational efficiency (for example, efficient tabulation has been implemented

in [17], [18] for three dimensions), it is desirable to have more general, computable conditions for higher

dimensions– for example to facilitate easy implementation of dimension independent thinning algorithms.

A comprehensive review of related methods is beyond the scope of this paper. The interested reader is

referred to the excellent survey articles by Kong and Rosenfeld [19] on digital topology and by McAndrew

and Osborne [20] on algebraic methods in digital topology and the references therein. Further, see [3],

[21] for the use of algebraic topology in image processing, see [22] for the computation of the Euler

number based on cubical homology and [23] for a general overview of computational topology.

The approach for simple point detection proposed in Section II is rooted in algebraic topology and

most closely related to the work of Tourlakis and Mylopoulos [9] to which it will be compared in the

remainder of this section.
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Given a set of points

P =

{
⋃

i

pi : pi ∈ Zd

}
,

the polyhedron Π(P) is made up solely of the points that fulfill

1) P ⊂ Π(P).

2) If all vertices of the unitary cube u are in P, then u ⊂ Π(P).

Then Π(P) is the “smallest” polyhedron covering P. Defining the covering polyhedron this way induces

a (2d)-connectivity between the points in P. Tourlakis and Myopoulos [9] define the open star of a point

x with respect to the set of points P as

St(x,P) := {x} ∪
⋃ ◦

e

x vertex of ◦
e

e⊂Π(P)

,

where ◦
e is an elementary cell1. The closed star of x with respect to P is

[St(x,P)] := {x} ∪
⋃

e
x vertex of e

e⊂Π(P)

,

where e is a unitary cube. The base of x in P is then defined as

B(x,P) := [St(x,P)] − St(x,P).

Figures (5) and (6) show illustrations of these concepts.

The following proposition [9] is most closely linked to the homology-simple point condition of

Theorem 1 of this paper.

1The elementary cell associated with a general elementary cube Q = I1×I2×· · ·×Id ⊂ Rd is given by
◦
Q =

◦
I1×

◦
I2×· · ·×

◦
Id,

where
◦
I := (l, l + 1) if I = [l, l + 1] and

◦
I := [l] if I = [l, l].
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(a) Set of points P .

x

(b) Polyhedron Π(P).

St(x,P) [St(x,P)] B(x,P)

(c) Determining the base B(x,P).

Fig. 5. Using the polyhedron approach to determine if a point x is simple. The loop case. Point x is not simple.

(a) Set of points P .

x

(b) Polyhedron Π(P).

St(x,P) [St(x,P)] B(x,P)

(c) Determining the base B(x,P).

Fig. 6. Using the polyhedron approach to determine if a point x is simple. The square case. Point x is simple.

Proposition 1

Let x ∈ P. Assume that the dimension d ≤ 3. Then the following statements are equivalent:

1) x is simple,

2) Hk(Π(P)) ∼= Hk(Π(P \ {x})) for all k ≥ 0, where the inclusion2 ı : Π(P \ {x}) )→ Π(P) induces

isomorphisms ık : Hk(Π(P \ {x})) )→ Hk(Π(P)) for all k ≥ 0,

3) Hk(B(x,P)) ∼= 0 for all k ≥ 1, while H0(B(x,P)) ∼= Z.

Thus, x is simple only if the base B(x,P) of x in P is simply connected and acyclic.

The homology-simple point condition of Theorem 1 is equivalent to Proposition (1) of [9] in two and

three dimensions if we construct the point set P such that each element of a discrete dataset is represented
2The inclusion condition is necessary for d = 3 and was proposed by Kong and Rosenfeld [19]. For an illustration of the

necessity of this condition see Figure (7) as given in [20].
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by all the vertices of its associated unitary cube. This induces a (3d−1)-connectivity between the unitary

cubes associated with the elements of the original discrete dataset. Since we only allow the removal of

complete d-dimensional unitary cubes from our cubical complex, the inclusion property of Proposition (1)

is automatically satisfied, and the counterexamples to the initial results in [9] as described in [19], [20]

no longer hold. Further, Theorem 1 holds for arbitrary finite dimensions, whereas Proposition (1) is only

valid in the two-dimensional and the three-dimensional case.

IV. SUMMARY AND CONCLUSIONS

We introduced two definitions for a simple point: the homology-simple point and the homotopy-simple

point. We showed that in low dimensions (d ≤ 3) the two concepts coincide. However, the less restrictive

concept of a homology-simple point extends to any finite dimension. The dimension-independence of the

homology-simple point is in contrast to previous approaches and makes it highly attractive for example

for skeletonization or for topology preserving level set methods. The point associated with a unitary cube

is a homology-simple point if the cubical complex induced by its (3d −1)-neighborhood (with the center

cube removed) is acyclic. For dimensions d ≤ 4 this condition may be written in terms of the Betti

numbers of the induced cubical complex. The point associated with a unitary cube is a homotopy-simple

point if the cubical complex induced by its (3d − 1)-neighborhood (with the center cube removed) is

contractible (i.e. homotopic) to a single point.

Dimension-independent algorithms for the computation of Betti numbers in a cubical setting are readily

available and facilitate the computation of the simple point condition. These algorithms [17] have been

used in dimensions three and higher to implement the simple point detection scheme proposed in this

paper.
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APPENDIX

In this appendix, Theorems 1 and 3 are reformulated into the language of cubical homology and proven.

For mathematical details, see [10]. The following result is equivalent to Theorem 1.

Theorem 4

Let X ⊂ Rd be a full cubical set. Let U(C;X) := {U ∈ Kd(X) | U ∩ C += ∅} \ {C}, where Kd denotes

the set of all elementary cubes in Rd and Kd(X) := {Q ∈ Kd : Q ⊂ X}. Let

A :=
⋃

U∈U(C;X)

U.

Then, the point associated with the cube C is a homology-simple point if and only if A is acyclic.

Proof: We begin by showing that the simplicity of the point associated with C is determined by A. Let

M := Kd(X) \ {C} and N (C) = {C} ∪ U(C;X).

Set M =
⋃

U∈M U and N =
⋃

U∈N U . By definition the point associated to C is homology-simple if

and only if H∗(M) ∼= H∗(X) with this isomorphism being induced by the inclusion map i : M → X.

Observe that A = M ∩ N and X = M ∪ N . The associated Mayer-Vietoris sequence is

· · · → Hk(A) φk→ Hk(M) ⊕ Hk(N) ψk→ Hk(X) ∂k→ Hk−1(A) → . . . (1)

However, C is a strong deformation retract of N and hence N is acyclic. Therefore, for k ≥ 1, (1)

reduces to

· · · → Hk(A) φk→ Hk(M) ik→ Hk(X) ∂k→ Hk−1(A) → . . . (2)

By definition the point associated to C is simple if and only if ik is an isomorphism for all k. However,

if ik is an isomorphism, then the images of φk and ∂k are trivial. This implies that Hk(A) = 0 for k ≥ 1.
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Again, the acyclicity of N implies that for k = 0 equation (1) reduces to

0 → H0(A) φ0→ H0(M) ⊕ Z ψ0→ H0(X) ∂0→ 0 (3)

Since the zeroth homology group of any space is free, kerψ0
∼= Z if and only if H0(A) ∼= Z.

We now turn to the proof of Theorem 3. If d ≤ 2, then the proof is a triviality and can be done

by inspection. Thus we present the details in the case d = 3. Without loss of generality let us assume

that C = [0, 1]3 is the elementary cube associated with p ∈ P ⊂ R3. Let X := CN(p) ∩ C . It is

straightforward though technical to check that X is homotopy equivalent to CN(p). Thus, to prove

Theorem 3 it is sufficient to prove that we can construct a contraction from C to X.

By Theorem 2 the hypothesis of Theorem 3 is equivalent to the acyclicity of X.

We will make extensive use of the elementary collapses in our construction of a contraction, hence we

review some of the essential definitions and properties. Let Z be a cubical complex. Let P ∈ Z be an

elementary cube with a free face Q ⊂ P . The elementary collapse of P by Q results in the new cubical

complex Z ′ := Z \ {P,Q}. Let Z and Z ′ denote the cubical sets defined by the cubical complexes Z

and Z ′, respectively. Two important facts are that H∗(Z) ∼= H∗(Z ′) and Z ′ is a deformation retract of

Z .

Let K(X) and K(C) denote the sets of elementary cubes associated with X and C = [0, 1] 3.

Furthermore, Kk(X) denotes the set of k-dimensional elementary cubes in X, etc. Our goal is to reduce

K(C) to K(X) via a series of elementary collapses. To do this we need to introduce some additional

notation.

In general given two cubical sets Y ⊂ Z , e.g. X ⊂ C , Z \ Y is not a cubical set. However, it can

be written as the union of elementary cells [10, Definition 2.13] which we denote by M. Furthermore,

let Mk denote the set of k-dimensional elementary cells in M. Let
◦
P ∈ Mk. Then P := cl(

◦
P ) is a
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k-dimensional elementary cube. Let
◦
Q ∈ Mk−1 and Q := cl(

◦
Q).

◦
Q is a free face of

◦
P with respect to

Y , if
◦
P is the unique elementary cell in Mk such that Q ⊂ P and Q +⊂ Y .

We can now begin our series of elementary collapses. LetM3 denote the set of elementary cells which

are subsets of C \ X. Observe that
◦
P = (0, 1)3 ∈ M3

3. Since H2(X) = 0, K2(X) += K2(C). Without

loss of generality we can assume that [0, 1]2 × [1] +∈ K2(X) or equivalently that
◦
Q = (0, 1)2 × [1] ∈ M3

2.

Let C2 be the cubical set obtained by the elementary collapse of P by Q. Then C ∼ C 2 and X ⊂ C2.

Let M2 denote the set of elementary cells which are subsets of C 2 \X. Observe that K3(C2) = ∅ and

hence M2
3 = ∅. If at this stage M2

2 = ∅, then C2 \ X = ∅ and we are done. So assume M2
2 += ∅. We

now proceed to remove elements of M2
2 via elementary collapses. This involves proving the existence

of free faces with respect to X.

Lemma 1

Let Z := {(0, 1) × [α] × [1], [α] × (0, 1) × [1] | α ∈ {0, 1}}. If M2
2 += ∅, then there exists

◦
Q ∈ M2

1 ∩ Z

which is a free face for some
◦
P ∈ M2

2.

Proof: If M2
1 ∩ Z = ∅, then

Y := {[0, 1] × [α] × [1], [α] × [0, 1] × [1] | α ∈ {0, 1}} ⊂ K1(X).

Let Y := ∪Q∈YQ. Observe that H1(Y ) ∼= Z. Furthermore, Y ⊂ X. However, we are assuming that

M2
2 += ∅ which precludes the assumption that X is acyclic.

Since X is a cubical set, if
◦
Q = (0, 1)× [α]× [1] ∈ M2

1, then [0, 1]× [α]× [0, 1] +∈ K2(X) and hence
◦
P = (0, 1) × [α] × (0, 1) ∈ M2

2, and
◦
Q is a free face of

◦
P . The same argument applies to the other

elements of Z .

Using Lemma 1 we can perform at least one elementary collapses. Let C 2,i denote the resulting space

after i such collapses and let M2,i denote the set of elementary cells which are subsets of C 2,i \ X.
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Lemma 2

If M2,i
2 += ∅, then there exists

◦
Q ∈ M2,i

1 which is a free face relative to X for some
◦
P ∈ M2,i

2 .

Proof: Let

M2,i :=
⋃{

Q |
◦
Q ∈ M2,i

}

Since i ≥ 1, we can without loss of generality assume that (0, 1)2× [1], [1]×(0, 1)2 +∈ M2,i
2 . This implies

that H1(M2,i) = 0.

Let
◦
P ∈ M2,i

2 . If Q ⊂ P and dim Q = 1, then
◦
Q can fail to be a free face of

◦
P relative to X in two

ways. Either Q ⊂ X or
◦
Q ∈ M2,i

1 and Q ⊂ P ′ += P where
◦
P ′ ∈ M2,i

2 .

We now proceed using a proof by contradiction. Observe that if X is acyclic using Z coefficients, then

it is acyclic using Z2 coefficients. Let M2,i
2 = {

◦
P j | j = 1, . . . , J}. Consider the chain

z :=
J∑

j=1

Pj

where we have identified the elementary cube with a basis element of C2(C2,i; Z2). Observe that ∂z ∈

C1(M2,i∩X; Z2) and hence ∂z ∈ Z1(M2,i∩X; Z2). SinceM2,i
2 ∩K2(X) = ∅, ∂z generates a nontrivial

element of H1(M2,i ∩ X; Z2). Now consider the Mayer-Vietoris sequence for C 2,i = M2,i ∪ X.

→ H2(C2,i; Z2) → H1(M2,i ∩ X; Z2) → H1(M2,i; Z2) ⊕ H1(X; Z2) →

C2,i was obtained by a sequence of deformation retracts from [0, 1]3 and hence is acylic. Thus, we the

following exact sequence

→ 0 → Zλ
2 → 0 ⊕ 0 →

where λ ≥ 1. Clearly a contradiction.
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Using Lemma 2 we can continue to perform elementary collapses until M2,i
2 = ∅. Let C1 := C2,i.

Let M1 denote the set of elementary cells which are subsets of C 1 \ X. If M1
1 = ∅ we are done, i.e.

C1 = X. Thus, we assume M1
1 += ∅.

Lemma 3

If M1,i
1 += ∅, then there exists

◦
Q ∈ M1,i

0 which is a free face relative to X for some
◦
P ∈ M1,i

1 .

Proof: Let M1,i
1 = {

◦
P j | j = 1, . . . , J} and let M 1,i = ∪J

j=1P . Consider any chain

z :=
J∑

j=1

αjPj , αj ∈ {0, 1}

where we have identified the elementary cube with a basis element of C1(C1,i; Z2).

Assume that ∂z = 0 so that z ∈ Z1(C1,i; Z2). Since C1,i is acyclic, there exists {R1, . . . , RL} ⊂

K2(C1,i) such that ∂
∑L

l=1 Rl = z =
∑J

j=1 αjPj . However, M1,i
2 = ∅ hence {R1, . . . , RL} ⊂ K2(X)

which precludes Pj ∈ M1,i
1 , a contradiction. Therefore, ∂z += 0.

Assume that ∂z ∈ C0(M1,i ∩ X; Z2). This will be the case if
◦
Q ∈ M1,i

0 implies that there exist

exactly two elementary cells
◦
P ,

◦
P ′ ∈ M1,i

1 such that P ∩ P ′ = Q. Since X is acyclic, there exists

{R1, . . . , RL} ⊂ K1(X) such that ∂
∑L

l=1 Rl = ∂z. Now observe that ∂(z +
∑L

l=1 Rl) = 0 and hence

z +
∑L

l=1 Rl ∈ Z1(C1,i; Z2). Since C1,i is acyclic, there exist {T1, . . . , TN} ⊂ K2(C1,i) such that

∂
∑N

n=1 Tn = z +
∑L

l=1 Rl. Since z :=
∑J

j=1 Pj and
◦
P j ∈ M1,i

1 , not all Tn can be elements of K2(X),

thus there exists Tn ∈ M1,i
2 , a contradiction.

Let z =
∑J

j=1 Pj. Given the preceding arguments, ∂z += 0 and ∂z +∈ C0(M1,i ∩ X; Z2). This implies

that z is a tree, i.e a graph composed of vertices and edges with no cycles. Moreover, assume that M 1,i
0

has no free faces relative to X. Since z is a tree, it must have at least two vertices which are free faces,

and hence these vertices must be in X.

18



Let us denote two of these free vertices by L1 and L2. We may assume that there is a path in the

tree with edges {Pk1 , . . . PkK
} ⊂ M1,i

1 from L1 to L2. However, since X is acyclic, L1 and L2 are

connected by edges {R1, . . . , RL} ⊂ K1(X). Now observe that ∂(
∑k

i=1 Pki
+

∑L
l=1 Rl) = 0 and we

have a contradiction as described above.

Using Lemma 3 we can continue to perform elementary collapses untilM1,i
1 = ∅. Let C0 := C1,i. Let

M0 denote the set of elementary cells which are subsets of C 0 \X. Since C0 is acyclic, it is connected.

Therefore, M0 = ∅ and the proof is completed.
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(a) Vertical loop. (b) Horizontal loop.

flipped

(c) Vertical loop represented by cubes.

flipped

(d) Removing the shaded cube preserves the verti-
cal loop.

Fig. 7. (2d)-connectivity between points (top of the figure) allows for a change in topology when a point is removed even
though the homology groups are isomorphic. Removing a point with an acyclic cubical neighborhood using (3d−1) connectivity
does not allow such a change in topology.
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