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ABSTRACT. We describe the basic lattice structures of attractors and repellers in dy-
namical systems. The structure of distributive lattices allows for an algebraic treat-
ment of gradient-like dynamics in general dynamical systems, both invertible and
noninvertible. We separate those properties which rely solely on algebraic structures
from those that require some topological arguments, in order to lay a foundation for
the development of algorithms to manipulate these structures computationally.

1. Introduction

As is made clear by Conley [6], attractors are central to our theoretical under-
standing of global nonlinear dynamics in that they form the basis for robust decom-
positions of gradient-like structures. They also play a singularly important role in
applications in that they often represent the dynamics that is observed. Thus it is
not surprising that attractors appear as standard topics in nonlinear dynamics [15],
and that their structure has been studied in a wide variety of settings. We make no
attempt to provide even a cursory list of references on the subject, but we do remark
that the theory developed in [1] applies in a general setting in which the dynamics
is generated by relations.
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Our motivation for returning to this subject arises from computations and ap-
plications. With regard to applications there is growing interest in understanding
the dynamics of multiscale systems. In this setting the models are typically heuristic
in nature, i.e. not derived from first principles, and in many cases the nonlinearities
are not presented in an analytic closed form, for example they may be taken as the
output of complicated or even black box computer code. However, we assume that
the actual system of interest can be usefully modeled by a deterministic dynamical
system defined as follows.

DEFINITION 1.1. A dynamical system on a topological space X is a continuous
map ϕ : T+ ×X → X that satisfies the following two properties:

(i) ϕ(0, x) = x for all x ∈ X , and
(ii) ϕ(t, ϕ(s, x)) = ϕ(t+ s, x) for all s, t ∈ T+ and all x ∈ X ,

where T denotes the time domain, which is either Z or R, and T+ := {t ∈ T | t ≥ 0}.

Throughout this paper we make the following assumption

Xis a compact metric space.

Note that we are not assuming that the system is invertible with respect to time.
This leads to subtle differences with respect to the more standard theory based on
invertible diffeomorphisms or flows (see [15]). For example, a set S ⊂ X is invariant
under ϕ if

ϕ(t, S) = S ∀t ∈ T+.

The fact that this condition is restricted to t ≥ 0, and that ϕ is not assumed to be
invertible, makes it important to distinguish between variants of this concept. In
Section 2.2 we introduce forward-backward invariant sets and strongly invariant sets,
which are both equivalent to invariant sets for invertible systems. Given a dynam-
ical system ϕ we denote the set of invariant sets by Invset(ϕ). Moreover, for U ⊂ X

we denote the maximal invariant set in U by

Inv(U,ϕ) =
⋃{

S ⊂ U | S ∈ Invset(ϕ)
}
.

For most nonlinear systems that arise in applications, explicit descriptions of the
dynamics are usually only obtained via numerical simulations. One of our goals is
the development of efficient computational methods which provide mathematically
rigorous statements about the structure of the dynamics. As is indicated above,
for the applications we have in mind we cannot assume that we have an explicit
expression for ϕ, but merely an approximation with bounds. Thus our description
of the dynamics must be robust with respect to perturbations or errors.

As indicated in the opening sentence of this introduction, it is our belief that
understanding the structure of attractors provides a robust computable means of
describing the global dynamics. Recall that an attractor A ⊂ X under ϕ can be
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characterized as a set for which there exists a compact neighborhood U of A such
that A = ω(U,ϕ) ⊂ int (U), i.e. A is the omega-limit set of U and lies in the inte-
rior of U . Similarly, a compact set U ⊂ X is an attracting neighborhood under ϕ if
ω(U,ϕ) ⊂ int (U). The set of attractors and attracting neighborhoods under ϕ are
denoted by Att(ϕ) and ANbhd(ϕ), respectively. By Proposition 4.3, Att(ϕ) has the
algebraic structure of a bounded distributive lattice. In the case of invertible dy-
namical systems this has been previously noted in [14], however, to accommodate
noninvertible systems the operations defining this structure must be modified, as
noted in [1]. Similarly, Proposition 4.1 guarantees that ANbhd(ϕ) is a bounded, dis-
tributive lattice and by Proposition 3.1, Inv(·, ϕ) : ANbhd(ϕ) → Att(ϕ) is a lattice
epimorphism.

A fundamental observation from the computational perspective is that the sur-
jective map Inv(·, ϕ) : ANbhd(ϕ) → Att(ϕ) is stable with respect to perturbations
(Proposition 3.22). In contrast, the surjective mapping Inv(·, ϕ) : 2X → Invset(ϕ) ap-
plied to all subsets of X typically has no stability properties, i.e. small changes in
U can lead to large changes in Inv(U,ϕ). Moreover, on this level Inv carries little
algebraic structure of invariant sets (it is not a lattice homomorphism), which is in
contrast to attractors, as is described below.

Recall that given an attractor A ∈ Att(ϕ), its dual repeller is defined by A∗ :=

{x ∈ X | ω(x, ϕ) ∩A = ∅}. Attractor-repeller pairs are the fundamental building
blocks for ordering invariant sets in a dynamical system (Theorem 3.19) and lead
to Conley’s fundamental theorem of dynamical systems [15, Theorem IX.1.1]. Re-
pellers can also be characterized in terms of repelling neighborhoods and alpha-
limit sets. Rep(ϕ), the set of repellers under ϕ, is a bounded, distributive lat-
tice (Proposition 4.4) as is RNbhd(ϕ), the set of repelling neighborhoods (Proposi-
tion 4.2). While there are lattice anti-homomorphisms between Att(ϕ) and Rep(ϕ),
and between ANbhd(ϕ) and RNbhd(ϕ), the lack of time invertibility of ϕ breaks the
complete symmetry between these concepts that is found in the invertible setting.
An important example of this is that the lattice epimorphism from repelling neigh-
borhoods to repellers is Inv+(·, ϕ) : RNbhd(ϕ)→ Rep(ϕ) defined by

Inv+(U,ϕ) :=
⋃{

S ⊂ U | S ∈ Invset+(ϕ)
}

where Invset+(ϕ) denotes the collection of all forward invariant sets of ϕ as de-
scribed in Section 2.2.

As is demonstrated in [10], given a finite discretization of X and finite approx-
imation of ϕ, elements of ANbhd(ϕ) and RNbhd(ϕ) can be computed. Part of the
motivation for this paper is our belief that useful extensions and proper analysis of
these types of computational methods requires a greater understanding of the above
mentioned algebraic structures. In particular, it is necessary to clearly distinguish
the algebraic operations (which can be handled by the computer) from topological
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arguments associated with the continuous nature of X and ϕ. This separation is not
well delineated in the current literature. As a result, the full nature of the algebraic
characterization is underutilized; the simplest example being the typical choice a
total ordering of a lattice of attractors instead of using the natural partial order.

A key step in this process of delineation is the commutative diagram

ANbhd(ϕ) RNbhd(ϕ)

Att(ϕ) Rep(ϕ)

oo //
c

����

ω(·, ϕ) = Inv(·, ϕ)
����

α(·, ϕ) = Inv+(·, ϕ)

oo //
∗

(1)

where both c (Proposition 4.6) and ∗ (Proposition 4.7) are involutions. The proof
that this diagram commutes (see Section 4) is the culmination of the topological
arguments in Section 3.

The results discussed up to this point have appeared to varying degrees scat-
tered throughout the literature. We hope the following points have been made clear.
Attractor-repeller pairs provide a theoretical framework in which to understand the
global order structure on nonlinear dynamics. Furthermore, the structure of attrac-
tors and repellers can be framed in the algebraic language of lattices, and this alge-
braic language allows for the transparent development of computer algorithms. In
addition, through the maps Inv(·, ϕ) and Inv+(·, ϕ) we can pass from lattices of at-
tracting and repelling neighborhoods, for which there exists efficient computational
algorithms, to lattices of attractors and repellers that are not directly computable in
general. Finally, these maps are robust with respect to either numerical or exper-
imental perturbation. This strongly suggests that this approach provides a frame-
work in which to develop a new computational theory of nonlinear dynamics, and
the first steps in this direction have been taken [2, 5, 4, 12].

For any given dynamical system ϕ, Att(ϕ) has at most countable elements while
ANbhd(ϕ) typically contains uncountably many elements. In general, given A ∈
Att(ϕ), one expects Inv−1(A, ϕ) to contain uncountably many elements. Of course,
for any given approximation scheme and calculation, the collection of attracting
neighborhoods that can be explicitly computed is finite, and hence the associated
sublattice of attractors is finite. Our goal is to develop a computational theory, which
raises the following fundamental question: Given a finite sublattice of attractors, does
there exists a finite sublattice of attracting neighborhoods such that Inv(·, ϕ) produces a
lattice isomorphism? The following theorem answers this question in the affirmative.
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THEOREM 1.2. Let i denote the inclusion map. (i) For every finite sublattice A ⊂
Att(ϕ), there exists a lattice monomorphism k such that the following diagram

ANbhd(ϕ)

A Att(ϕ)

����

Inv(·,ϕ)

// //i
??

??

k

commutes.
(ii) For every finite sublattice R ⊂ Rep(X), there exists a lattice monomorphism k such that
the following diagram

RNbhd(ϕ)

R Rep(ϕ)

����

Inv+(·,ϕ)

// //i
??

??

k

commutes.

This theorem implies that there is no fundamental algebraic obstruction to iden-
tifying any finite collection of attractors via attracting neighborhoods, which are
computable objects [10]. Another consequence is an alternative proof of the exis-
tence of a index filtration to that presented in [8].

It is worth thinking about Theorem 1.2 from a more categorical perspective.
Recall that a lattice H is projective if given any diagram of lattice homomorphisms

H

K L

��

��

`

��

��

k

// //h

for which the horizontal arrow is an epimorphism, there exists a lattice homomor-
phism k that makes the diagram commute. Projective, bounded, distributive lattices
have been characterized [3], and the fact that Att(ϕ) can have the following lattice
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structure

1

• •

•

• •

0

implies that in general a finite sublattice of Att(ϕ) is not projective.
With this in mind our approach to proving Theorem 1.2 is to introduce the con-

cept of a spacious lattice homomorphism (Definition 5.8), and we prove that if in
the above diagram h is spacious, then the desired homomorphism k exists (The-
orem 5.13). We show that Inv+(·, ϕ) is spacious (Proposition 5.12) even though in
general Inv(·, ϕ) is not (Example 5.11). An important benefit of this approach, that is
exploited in future work [11], is that if we develop numerical methods under which
Inv+(·, ϕ) or Inv(·, ϕ), restricted to computable neighborhoods, is spacious, then we
can guarantee that our numerical methods are capable of capturing the desired al-
gebraic structure of the dynamics.

A version of Theorem 1.2 for invertible systems is proved in Robbin and Sala-
mon [14]. Without the invertibility assumption, the proof of this theorem is more
subtle. In particular, in the invertible case Inv(·, ϕ) : ANbhd(ϕ) → Att(ϕ) is a spa-
cious homomorphism but not in the general case. Therefore, our approach depends
on the duality between the lattices of attractors and repellers. In particular, we make
use of properties of Inv+(·, ϕ) to prove Theorem 1.2(ii) and then use lattice duality
between Att(ϕ) and Rep(ϕ) to prove (i).

We conclude this introduction with a brief outline. We begin in Section 2.1 with
a brief review of essential ideas from lattice theory. We provide a similar review
concerning dynamics in Section 2.2.

In Section 3, we present the basic properties of attractors, repellers, and
attractor-repeller pairs in the context of potentially noninvertible systems. This cul-
minates in Theorem 3.19 on attractor-repeller pair decompositions that formalizes
the idea that attractor-repeller pairs are the fundamental building blocks for order-
ing invariant sets in a dynamical system. As indicated above one goal is to provide
a clear demarcation between the topological arguments and the algebraic computa-
tions. Thus this section, which consists of pure point set topological arguments, is
followed by Section 4, which contains a demonstration that attractors and repellers
have the algebraic structure of bounded, distributive lattices.



LATTICE STRUCTURES FOR ATTRACTORS I 7

A reader whose primary interest is in Theorem 1.2 could accept the results of
Sections 3 and 4 and proceed directly to Section 5. In this section we present a proof
of this thorem by first proving a general result, Theorem 5.13, concerning the lifting
of lattice homomorphisms over bounded, distributive lattices. Then we apply this
theorem to the lifting of a finite sublattice of attractors (or repellers) to a lattice of
attracting (or repelling) neighborhoods. Theorem 5.13 is of interest in own right and
should be useful in the study of the lattice of Lyapunov functions, as in [14], and in
the context of combinatorial dynamical systems used in computational methods, as
mentioned above. These applications will be the subject of future work.

Acknowledgement. The first author is partially supported by NSF grant NFS-DMS-
0914995, the second author is partially supported by NSF grants NSF-DMS-0835621,
0915019, 1125174, 1248071, and contracts from AFOSR and DARPA. The present
work is part of the third authors activities within CAST, a Research Network Pro-
gram of the European Science Foundation ESF.

2. Background

In this section, we summarize the main elements of lattice theory that will be
used. Then we review elementary results and introduce notation concerning in-
variant sets. The results can be viewed as either special cases of the more general
framework presented in [1] or natural extensions of the standard theory based on
invertible dynamics [15], and hence we do not provide proofs. In preparation for
the work of the later sections we also state and prove elementary lattice properties
of these invariant sets. The proofs are fairly elementary, but are included since we
are unaware of any single reference for all the results presented.

2.1. Lattices. A lattice is a set L with the binary operations ∨,∧ : L × L → L

satisfying the following axioms:

(i) (idempotent) a ∧ a = a ∨ a = a for all a ∈ L,
(ii) (commutative) a ∧ b = b ∧ a and a ∨ b = b ∨ a for all a, b ∈ L,

(iii) (associative) a ∧ (b ∧ c) = (a ∧ b) ∧ c and a ∨ (b ∨ c) = (a ∨ b) ∨ c for all
a, b, c ∈ L,

(iv) (absorption) a ∧ (a ∨ b) = a ∨ (a ∧ b) = a for all a, b ∈ L.

A distributive lattice satisfies the additional axiom

(v) (distributive) a∧ (b∨ c) = (a∧ b)∨ (a∧ c) and a∨ (b∧ c) = (a∨ b)∧ (a∨ c)
for all a, b, c ∈ L.

For distributivity, if one of the two conditions in (v) is satisfied, then so is the other.
A lattice is bounded if there exist neutral elements 0 and 1 with property that

(vi) 0 ∧ a = 0, 0 ∨ a = a, 1 ∧ a = a, and 1 ∨ a = 1 for all a ∈ L.
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A subset K ⊂ L is called a sublattice of L, if a, b ∈ K implies that a ∨ b ∈ K and
a ∧ b ∈ K. For sublattices of bounded lattices we impose the additional condition
that 0, 1 ∈ K.

Let K and L be lattices. A function h : K→ L is a lattice homomorphism if

h(a ∧ b) = h(a) ∧ h(b) and h(a ∨ b) = h(a) ∨ h(b),

and a lattice anti-homomorphism if ∨ is replaced by ∧ and vice versa. A lattice homo-
morphism between bounded lattices is a lattice homomorphism with the additional
property that h(0) = 0 and h(1) = 1. Bounded, distributive lattices together with
the above described morphisms form a category denoted by BDLat. Summarizing:

In the category of bounded, distributive lattices, sublattices contain 0 and 1, and the lattice
homomorphisms preserve 0 and 1.

In some of the structures we encounter in this paper inversion relations are sat-
isfied. In the context of lattices this is often described by Boolean algebras. A Boolean
algebra is a bounded, distributive lattice B with the additional complementation re-
lation a 7→ ac ∈ B which satisfies the axiom:

(vii) a ∧ ac = 0 and a ∨ ac = 1 for all a ∈ B.

A Boolean homomorphism between Boolean algebras is a lattice homomor-
phism which preserves complements. We remark that if h : B → C is a lattice
homomorphism between Boolean algebras, then f is automatically a Boolean homo-
morphism (see [7, Lemma 4.17]). Boolean algebras with Boolean homomorphisms
form a category, denoted by Bool.

In this context, there is the following classical result: Every bounded, distributive
lattice can be embedded in a Boolean algebra, see [9, Theorem 153]. However, we need
the following stronger result that establishes this procedure as a functor.

THEOREM 2.1. Given a bounded, distributive lattice L, then there is a unique (up to
isomorphism) Boolean algebra B(L) and a lattice homomorphism j : L → B(L) with the
property that for every homomorphism g from L to a Boolean algebra C there exists a unique
lattice homomorphism B(g) : B(L)→ C such that B(g) ◦ j = g.

The Boolean algebra B(L) in the above theorem is the Booleanization of L, and the
theorem implies that Booleanization is a covariant functor from the category of
bounded, distributive lattices BDLat to the category of Boolean algebras Bool, see
[17, Definition 9.5.5] and [13, Corollary 20.11].

Our approach makes significant use of Birkhoff’s Representation Theorem,
which provides a deep relation between finite distributive lattices and posets. To
state this theorem requires the introduction of several concepts that allow us to
move back and forth between posets and lattices.

A poset (P,≤) is a set P with a binary relation ≤, called a partial order, which
satisfies the following axioms:
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(i) (reflexivity) p ≤ p for all p ∈ P,
(ii) (anti-symmetry) p ≤ q and q ≤ p implies p = q,

(iii) (transitivity) if p ≤ q and q ≤ r, then p ≤ r.

Let P and Q be posets. A mapping f : P→ Q is called order-preserving if f(p) ≤ f(q)

for all p ≤ q. A mapping is an order-embedding if f(p) ≤ f(q) if and only if p ≤ q.
Posets together with order-preserving mappings form a category denoted by Poset.

A lattice L has a naturally induced partial order as follows. Given a, b ∈ L define

a ≤ b ⇔ a ∧ b = a ⇔ a ∧ bc = 0, (2)

where the latter relation only makes sense in the setting of a Boolean algebra.
Given an element p ∈ P, the down-set and up-set of p are the sets ↓ p = {q ∈

P | q ≤ p} and ↑ p = {q ∈ P | p ≤ q}, respectively. The collection of down-sets of a
finite poset P generates a finite distributive lattice denoted by O(P) with respect to
∨ = ∪ and ∧ = ∩.

Given any poset P its dual, denoted by P∂ , is defined to be the poset with order
p ≤ q in P∂ if and only if q ≤ p in P. It is left to the reader to check that the complement
function

c : O(P) → O(P∂)

α 7→ αc := P \ α

is a involutive lattice anti-morphism.
Given a lattice L, an element c ∈ L is join-irreducible if

(a) c 6= 0 and
(b) c = a ∨ b implies c = a or c = b for all a, b ∈ L.

The set of join-irreducible elements in L is denoted by J(L). Observe that c is join-
irreducible if and only if there exists a unique element a ∈ L such that a < c, and
hence we can define the predecessor map ← : J(L) → L. The set J(L) is a poset as a
subset of L.

Let FDLat denote the small category of finite distributive lattices, whose ho-
momorphisms map 0 and 1 to itself according to our conventions, and let FPoset
denote the small category of finite posets, whose morphisms are order-preserving
mappings. For a finite distributive lattice L and finite poset P the maps

L
J−→ J(L) and P

O−−→ O(P)

define contravariant functors from FDLat to FPoset and from FPoset to FDLat re-
spectively.

Finally, define the mapping

↓∨ : L → O(J(L))

a 7→ ↓∨ a = {b ∈ J(L) | b ≤ a} =↓a ∩ J(L).
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THEOREM 2.2 (Birkhoff’s Representation Theorem). Let L be a finite distributive
lattice and let P be a finite partially ordered set. Then ↓∨ : L→ O

(
J(L)

)
is a lattice isomor-

phism, and ↓ : P→ J
(
O(P)

)
is an order isomorphism.

For a proof see [7, 16]. We can use this representation to recast Theorem 2.1.

PROPOSITION 2.3. Let P be a finite poset, and let f : O(P) → L be a lattice ho-
momorphism, where L is a bounded, distributive lattice with Booleanization B(L) and
lattice-embedding j : L → B(L). Then there exists a unique homomorphism B(f) : 2P =

B(O(P)) → B(L) such that for every α ∈ O(P) ⊂ 2P we have j ◦ f(α) = B(f)(α). In
particular, for every α ∈ 2P we have

B(f)(α) =
∨
p∈α

B(f)({p}). (3)

Moreover,
B(f)({p}) ∧ B(f)({p′}) = 0 (4)

for all p, p′ ∈ P with p 6= p′.

PROOF. The result follows immediately from Theorem 2.1 by observing that
since P is finite, we can take B(O(P)) = 2P where the corresponding embedding
i : O(P)→ 2P is the inclusion map.

2.2. Invariant sets. Since we assume ϕ to be defined and single-valued only
for positive times, ϕ does not necessarily extend to a function satisfying Defini-
tion 1.1(ii) for negative times. However, for t < 0, the sets

ϕ(t, x) := {y ∈ X | ϕ(−t, y) = x}

extend ϕ to a (possibly) multivalued map for negative times, but note that ϕ(t, x)

may be the empty set in this case. The semigroup property implies that ϕ(t,X) = X

for some t > 0 if and only if ϕ(t,X) = X for all t ∈ T+. In this case ϕ defines a
surjective dynamical system, for which ϕ(t, S) 6= ∅ for all ∅ 6= S ⊂ X and t ∈ T. Note
that a dynamical system is surjective if and only if X is an invariant set.

For x ∈ X , consider a continuous function γx : T → X , satisfying γx(0) = x,
and γx(t+s) = ϕ(s, γx(t)) for all t ∈ T and all s ∈ T+. Its image, also denoted by γx,
is called a complete orbit through x. A set S is invariant if and only if for each x ∈ S
there exists a complete orbit γx ⊂ S. The restriction to t ≤ 0 gives the backward orbit
γ−x and the restriction to t ≥ 0 gives the forward orbit γ+

x . The backward image of a
set U is Γ−(U) =

⋃
t≤0 ϕ(t, U) and the forward image is Γ+(U) =

⋃
t≥0 ϕ(t, U).

Recall that a set S ⊂ X is invariant if

ϕ(t, S) = S ∀t ∈ T+.

A set S ⊂ X is forward invariant if

ϕ(t, S) ⊂ S ∀t ∈ T+.
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The collection of forward invariant sets is denoted by Invset+(ϕ). Observe that
Invset(ϕ) ⊂ Invset+(ϕ). Similarly, a set S is backward invariant if

ϕ(t, S) ⊂ S ∀t ∈ T−.

and backward invariant sets are denoted by Invset−(ϕ). Sets that are both forward
and backward invariant are called forward-backward invariant sets and denoted by
Invset±(ϕ) = Invset+(ϕ)∩ Invset−(ϕ). Observe that forward invariance implies that
S ⊂ ϕ(−t, ϕ(t, S)) ⊂ ϕ(−t, S), for t ≥ 0 and backward invariance implies that
ϕ(t, S) ⊂ S, for t ≤ 0, thus elements of Invset±(ϕ) can be characterized by:

ϕ(t, S) = S ∀t ∈ T−

In particular, the phase space X ∈ Invset±(ϕ). Finally a set S ⊂ X is called strongly
invariant if

ϕ(t, S) = S ∀t ∈ T.
The strongly invariant sets are denoted by SInvset(ϕ) = Invset(ϕ) ∩ Invset±(ϕ). If
ϕ is surjective, then SInvset(ϕ) = Invset±(ϕ). For invertible systems Invset(ϕ) =

Invset±(ϕ) = SInvset(ϕ).

EXAMPLE 2.4. Consider ϕ : Z+ × [−1, 1]→ [−1, 1] generated by

f(x) =

{
0 for x ∈ [−1, 0]
5
2x(1− x) for x ∈ [0, 1].

Observe that K = { 3
5} ∈ Invset(ϕ), but f−1(K) = { 2

5 ,
3
5} and hence K 6∈ SInvset(ϕ).

Thus Invset(ϕ) 6⊂ SInvset(ϕ) ⊂ Invset−(ϕ).

We leave it to the reader to check that a dynamical system ϕ can be restricted to
S ∈ Invset+(ϕ), that is,

ϕ|S : T+ × S → S

(t, x) 7→ ϕ(t, x)

is a dynamical system. The backward extension is given by ϕ|S(t, x) = ϕ(t, x) ∩ S
for all t < 0. If S ∈ Invset(ϕ), then ϕ|S is a surjective dynamical system on S.

The sets Invset+(ϕ) and Invset−(ϕ) are bounded, distributive lattices with re-
spect to the binary operations ∨ = ∪ and ∧ = ∩. The neutral elements are 0 = ∅
and 1 = X .

PROPOSITION 2.5. The function
c : Invset+(ϕ) → Invset−(ϕ)

S 7→ Sc

is an involutive lattice anti-isomorphism.
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PROOF. De Morgan’s laws imply that on the level of sets the complement map
is a lattice anti-homomorphism.

If S ∈ Invset+(ϕ), then ϕ(t, S) ⊂ S, for all t ≥ 0. Therefore S ⊂ ϕ(−t, ϕ(t, S)) ⊂
ϕ(−t, S), and hence S ⊂ ϕ(t, S) for all t ≤ 0. Since ϕ(t,X) = X for all t ≤ 0, we
have Sc ⊃ ϕ(t, S)c = ϕ(t, Sc) for all t ≤ 0, which proves that Sc ∈ Invset−(ϕ).

If S ∈ Invset−(ϕ), then ϕ(t, S) ⊂ S for all t ≤ 0. Moreover, for t ≤ 0, X =

ϕ(t,X) = ϕ(t, S ∪ Sc) = ϕ(t, S) ∪ ϕ(t, Sc), from which we derive that Sc ⊂ ϕ(t, Sc)

for all t ≤ 0. Furthermore, ϕ(−t, Sc) ⊂ ϕ(−t, ϕ(t, Sc)) ⊂ Sc for all t ≤ 0, and thus
ϕ(t, Sc) ⊂ Sc for t ≥ 0, which proves that Sc ∈ Invset+(ϕ).

COROLLARY 2.6. Invset±(ϕ) is a Boolean algebra.

Next we establish that Invset(ϕ) is also a lattice. Through out this paper, the
dynamical systemϕ is considered fixed and thus for the sake of notational simplicity
we let

Inv(·) = Inv(·, ϕ) and Inv+(·) = Inv+(·, ϕ).

Observe that Invset(ϕ) (as well as Invset+(ϕ), Invset−(ϕ), and Invset±(ϕ)) is a poset
with respect to inclusion and Inv : 2X → Invset(ϕ) is order-preserving. We leave it
to the reader to check that if S, S′ ∈ Invset(ϕ), then S ∪ S′ ∈ Invset(ϕ) and S ∪ S′ =

sup(S, S′). In general, S ∩ S′ ∈ Invset+(ϕ) and hence Invset(ϕ) is not necessarily
closed under intersection. However, as indicated below, every pair S, S′ ∈ Invset(ϕ)

has a greatest lower bound.

LEMMA 2.7. For every pair S, S′ ∈ Invset−(ϕ) or S, S′ ∈ Invset+(ϕ),

Inv(S ∪ S′) = Inv(S) ∪ Inv(S′);

Inv(S ∩ S′) = Inv
(
Inv(S) ∩ Inv(S′)

)
.

PROOF. We prove the lemma for forward invariant sets. The arguments are
similar for backward invariant sets. Let S, S′ ∈ Invset+(ϕ), then Inv(S) ∪ Inv(S′) ⊂
Inv(S∪S′). To establish the reverse inclusion we argue as follows. Let x ∈ Inv(S∪S′)
and let γx ⊂ Inv(S ∪ S′) be a complete orbit. Since S, S′ ∈ Invset+(ϕ), it follows that
for all y ∈ γx we have that γ+

y ⊂ S when y ∈ S, and γ+
y ⊂ S′ when y ∈ S′. This

implies that y ∈ S or y ∈ S′ for all y ∈ γx, and thus γx ∈ Inv(S) or γx ∈ Inv(S′).
Consequently, Inv(S ∪ S′) ⊂ Inv(S) ∪ Inv(S′).

As for intersections we have that Inv(S) ∩ Inv(S′) ⊂ S ∩ S′, and therefore
Inv
(
Inv(S) ∩ Inv(S′)

)
⊂ Inv(S ∩ S′). On the other hand Inv(S ∩ S′) ⊂ Inv(S),

and Inv(S ∩ S′) ⊂ Inv(S′), which implies Inv(S ∩ S′) ⊂ Inv(S) ∩ Inv(S′) and
Inv(S ∩ S′) ⊂ Inv

(
Inv(S) ∩ Inv(S′)

)
.

PROPOSITION 2.8. With the binary operations ∨ = sup = ∪ and ∧ defined by

S ∧ S′ = inf(S, S′) = Inv(S ∩ S′),
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Invset(ϕ) is a bounded distributive lattice. The neutral elements are 0 = ∅ and 1 = Inv(X).

PROOF. We prove the distributive property. For S, S′, S′′ ∈ Invset(X), then sets
S ∩ S′ and S ∩ S′′ are forward invariant. Then by Lemma 2.7

(S ∧ S′) ∨ (S ∧ S′′) = Inv(S ∩ S′) ∪ Inv(S ∩ S′′)
= Inv((S ∩ S′) ∪ (S ∩ S′′))
= Inv(S ∩ (S′ ∪ S′′)) = Inv(S) ∧ Inv(S′ ∪ S′′)
= S ∧ (S′ ∨ S′′),

which completes the proof.

Lemma 2.7 implies that Inv : Invset−(ϕ) → Invset(ϕ) and Inv : Invset+(ϕ) →
Invset(ϕ) are lattice homomorphisms.

SInvset(ϕ) is a lattice with respect to intersection and union, and a sublattice of
Invset(ϕ). The following lemma establishes an important property relating to the
algebra of invariant sets (see Proposition 3.13).

LEMMA 2.9. Let S ∈ Invset±(ϕ) and S′ ∈ Invset(ϕ), then S ∩ S′ ∈ Invset(ϕ).

PROOF. Since S and S′ are both forward invariant, it follows that ϕ(t, S ∩S′) ⊂
S ∩ S′ for all t ≥ 0. Since S ∈ Invset±(ϕ), it holds that ϕ(−t, S) = S for all t ≥ 0.
The invariance of S′ implies that ϕ|S′ is surjective, and therefore for each x ∈ S′ we
have ϕ(−t, x) ∩ S′ 6= ∅. Combining these facts yields that for each x ∈ S ∩ S′ and
each t ≥ 0 there exists a point y ∈ S ∩ S′ such that ϕ(t, y) = x. This shows that
S ∩ S′ ⊂ ϕ(t, S ∩ S′) for all t ≥ 0. Therefore ϕ(t, S ∩ S′) = S ∩ S′ for all t ≥ 0, which
proves the invariance of S ∩ S′.

LEMMA 2.10. Inv+ : Invset−(ϕ)→ Invset±(ϕ).

PROOF. By definition Inv+(U) is forward invariant. Since U is backward in-
variant, then for every x ∈ Inv+(U) we have Γ−(x) ⊂ U . Let y ∈ Γ−(x), then
ϕ(s, y) = x for some s ≥ 0. Consequently, ϕ(t + s, y) = ϕ(t, ϕ(s, y)) = ϕ(t, x) ⊂ U ,
and ϕ(σ, y) ∈ U for 0 ≤ σ ≤ s, and thus γ+

y ⊂ U . This implies y ∈ Inv+(U) and
therefore Γ−(x) ⊂ Inv+(U), which proves that ϕ(t, Inv+(U)) ⊂ Inv+(U) for all t ≤ 0.

The reader can check that Inv+ : Invset−(ϕ) → Invset±(ϕ) is a lattice homomor-
phism.

For a set U ⊂ X define

α(U) =
⋂
t≤0

cl
(
ϕ
(
(−∞, t], U

))
and ω(U) =

⋂
t≥0

cl
(
ϕ
(
[t,∞), U

))
,

which are called the alpha-limit and omega-limit sets of U respectively. For noninvert-
ible dynamical systems, as studied in this paper, there is a lack of symmetry between
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alpha-limit and omega-limit sets. In the next two propositions we list the important
properties of limit sets that are used throughout the remainder of this work.

PROPOSITION 2.11. Let U ⊂ X , then ω(U) satisfies the following list of properties:

(i) ω(U) ∈ Invset(ϕ) is compact;
(ii) U 6= ∅ implies ω(U) 6= ∅;

(iii) if ϕ(t, U) ⊂ U for all t ≥ τ ≥ 0, then ω(U) = Inv
(
cl (U)

)
⊂ cl (U);

(iv) V ⊂ U implies ω(V ) ⊂ ω(U);
(v) ω(U ∪ V ) = ω(U) ∪ ω(V ) and ω(U ∩ V ) ⊂ ω(U) ∩ ω(V );

(vi) ω(U) = ω
(
cl (U)

)
;

(vii) if there exists a backward orbit γ−x ⊂ U , then x ∈ ω(U);
(viii) if U ∈ Invset(ϕ), then cl (U) = ω(U).

REMARK 2.12. Proposition 2.11(viii) implies that the closure of an invari-
ant set is invariant and the closure of a forward invariant is forward invariant,
i.e. cl : Invset → Invset and cl : Invset+ → Invset+. However, this property does
not hold for backward invariant sets, cf. Example 2.14.

PROPOSITION 2.13. Let U ⊂ X (with X compact), then α(U) satisfies the following
list of properties:

(i) α(U) ∈ Invset+(ϕ) is compact;
(ii) U 6= ∅ and ϕ surjective implies α(U) 6= ∅;

(iii) if U ∈ Invset−(ϕ), then α(U) ⊂ cl (U), and if cl (U) ∈ Invset−(ϕ), then
α
(
cl (U)

)
= Inv+

(
cl (U)

)
;

(iv) if V ⊂ U , then α(V ) ⊂ α(U);
(v) α(U ∪ V ) = α(U) ∪ α(V ) and α(U ∩ V ) ⊂ α(U) ∩ α(V );

(vi) if γ+
x ⊂ U , then x ∈ α(U). In particular Inv+(U) ⊂ α(U), and Inv+(U) =

α(U) whenever α(U) ⊂ U ;
(vii) if U ∈ Invset−(ϕ) and compact, then α(U) ∈ Invset±(ϕ). If in addition ϕ is

surjective, then α(U) ∈ SInvset(ϕ) and α(U) = Inv(U);
(viii) U ∈ Invset+(ϕ) implies cl (U) ⊂ α(U), and if U ∈ Invset±(ϕ), then cl (U) =

α(U).

For a point x ∈ X and for a backward orbit γ−x we define the orbital alpha-limit
set by

αo(γ−x ) =
⋂
t≤0

cl
(
γx
(
(−∞, t]

))
.

EXAMPLE 2.14. Alpha-limit sets need not be invariant. Consider the dynamical
system in Example 2.4. Let U = [−1, 0]. Then α(U) = U , but f(U) = {0} and hence
α(U) 6∈ Invset(ϕ).
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Alpha-limit sets need not be nonempty. Consider W = [−1, 0), then α(W ) = ∅.
This example also shows that Proposition 2.13(viii) is sharp as W ∈ Invset−(ϕ) and
cl (W ) 6⊂ α(W ).

Alpha-limit sets need not be backward invariant. Let z = 3
5 . There are two

distinct backward orbits: the constant orbit γ−c (n) = 3
5 for all n ∈ Z−; and the orbit

γ−(n) = f−n− ( 3
5 ) for n ∈ Z− where f−1

− (x) := (1−
√

1− (8x)/5)/2. Since γ−(n)→ 0

as n → −∞, α( 3
5 ) = γ− ∪ {0}. Then f−1(α( 3

5 )) = γ− ∪ [−1, 0], which shows that
α( 3

5 ) 6∈ Invset−(ϕ).
Now, consider the set V = { 3

5}, which is invariant but not backward invariant.
In particular there are two distinct backward orbits from the point 3

5 , namely the
constant orbit γ−c (n) = 3

5 for all n ∈ Z− and the orbit γ−(n) = f−n− ( 3
5 ) for n ∈ Z−

where f−1
− (x) := (1 −

√
1− (8x)/5)/2. Since γ−(n) → 0 as n → −∞, α(V ) =

γ− ∪ {0}. Then f−1(α(V )) = γ− ∪ [−1, 0], which shows that α(V ) is not backward
invariant. Moreover, αo(γ−x ) = {0} ( α({x}) with x = 3/5.

To see that compactness is necessary in Proposition 2.13(vii), consider the full,
nonconstant orbit γ through 3

5 . Observe that γ ∈ Invset−(ϕ), but cl (γ) = γ ∪ {0} 6∈
Invset−(ϕ).

PROPOSITION 2.15. If x ∈ U ⊂ X , then αo(γ−x ) is nonempty, compact, and invari-
ant, and αo(γ−x ) ⊂ α(U).

Orbital alpha-limit sets and omega-limit sets can be used to introduce a notion
of dual set of a subset S ⊂ X . The positive dual set of S is

S⊕ := {x ∈ X | ω(x) ∩ S = ∅}

and the negative dual set of S is

S	 := {x ∈ X | ∃γx such that αo(γ−x ) ∩ S = ∅}.

PROPOSITION 2.16. Let S ⊂ X , then S⊕ is forward-backward invariant, and S	 is
invariant. Moreover, if S is compact, then invariance of S implies that S ∩ S⊕ = ∅, and
forward-backward invariance of S implies that S ∩ S	 = ∅.

3. Attractors and Repellers

A trapping region is a forward invariant set U ⊂ X such that

ϕ(τ, cl (U)) ⊂ int (U) for some τ > 0.

A set A ⊂ X is an attractor if there exists a trapping region U such that A = Inv(U).

3.1. Properties of attractors. As indicated in the introduction one of ours goals
is the commutative diagram (1). To obtain this requires a detailed understanding of
the relationship between attractors and their neighborhoods. This is a well studied
topic and thus we only state the specific results that we make use of. Proofs of these



16 W.D. KALIES, K. MISCHAIKOW, AND R.C. VANDERVORST

results can either be found in [15, Section IX.9.1] or can be obtained using the similar
arguments. We begin by providing an equivalent characterization of attractors.

PROPOSITION 3.1. If U is a trapping region, then the associated attractor Inv(U) =

Inv(cl (U)) = ω(U) is compact.

The following lemmata lead to a proof of Proposition 3.5 (alternatively see [15,
Proposition IX.9.1.10]), but are included because they are explicitly cited in the
proofs provided in late subsections of this section.

LEMMA 3.2. A neighborhood U ⊂ X is an attracting neighborhood if and only if there
exists a τ > 0 such that ϕ(t, cl (U)) ⊂ int (U), for all t ≥ τ . In addition, if U is an
attracting neighborhood, then so are cl (U) and int (U).

LEMMA 3.3. A neighborhood U ⊂ X is a trapping region if and only if U is a forward
invariant attracting neighborhood.

LEMMA 3.4. Let U ⊂ X be attracting neighborhood for an attractor A = ω(U), and
let U ′ ⊂ X be a neighborhood ofA such thatA ⊂ U ′ ⊂ cl (U). Then also U ′ is an attracting
neighborhood with A = ω(U ′).

The following proposition asserts that the omega-limit set of an attracting
neighborhood is an attractor. Therefore we say that U is an attracting neighborhood
for an attractor A if A = ω(U) ⊂ int (U).

PROPOSITION 3.5. A set A ⊂ X is an attractor if and only if there exists a neighbor-
hood U ofA such thatA = ω(U). In particular, U is an attracting neighborhood. Moreover,
for every attracting neighborhood U there exists a trapping region U ′ ⊂ U .

COROLLARY 3.6. Let U ⊂ X be an attracting neighborhood, then A = Inv(U) =

Inv(cl (U)) = ω(U) is an attractor.

3.2. An attractor inside an attractor. An important property of attractors con-
cerns relative attractors inside an attractor.

PROPOSITION 3.7. If A ⊂ X is an attractor for ϕ and A′ ⊂ A is an attractor for ϕ|A,
then A′ is an attractor for ϕ.

Before proving the proposition we first need a few technical results.

LEMMA 3.8. Let N ⊂ X a compact subset, and suppose {xn} ⊂ N is a sequence such
that xn → x ∈ N and {τn} ⊂ [0,∞) is a sequence such that τn → ∞ as n → ∞. If
there exist backward orbit segments γ−xn : [−τn, 0] → N through xn for each n ∈ N, then
there exists a complete backward orbit γ−x : T− → N through x, such that γ−xn |I → γ−x |I
uniformly on every compact interval I ⊂ T−.
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PROOF. Let x0
n = xn and x0 = x. Choose n1 such that τn > 1 for n ≥ n1 and

define x1
n = γ−xn(−1). By choosing a subsequence if necessary, denoted again by

x1
n, we can assume by the compactness of N that x1

n → x1. There exists a unique
forward orbit γ+

x1 through x1, and the function γ−x0 defined by γ−x0(t) = γ+
x1(1 + t)

on [−1, 0] is a piece of a backward orbit through x0. We can repeat this process to
recursively obtain integers nk such that τn > k for n ≥ nk and sequences xkn → xk.
Now glue together the backward orbits γ−

xk
defined on [−1, 0] through xk to obtain

a backward orbit γ−x through x defined on (−∞, 0]. Without loss of generality fix
τ > 0 and consider the interval I = [−τ, 0]. Let yn = γ−xn(−τ). For n sufficiently
large the orbit segments γ−xn |I are defined, and are equivalent to the forward orbit
segments γ+

yn : [0, τ ] → N under time reversal. The convergence of the forward
orbit segments is due to the uniform continuity of ϕ on compact sets, from which
the convergence of the backward orbits follows.

LEMMA 3.9. Suppose N is a compact set with S = Inv(N) ⊂ int (N). For τ > 0

define N+
τ = {x ∈ N | ϕ([0, τ ], x) ⊂ N }. Then there exists δτ > 0 such that Bδτ (S) ⊂

N+
τ , i.e. ϕ([0, τ ], Bδτ (S)) ⊂ N .

PROOF. By continuity and the invariance of S = Inv(N), for each x ∈ S there
exists δx > 0 such that ϕ([0, τ ], Bδx(x)) ⊂ N . By compactness there exists finitely
many such balls Bδxi (xi) such that S ⊂ ∪iBδxi (xi). Since this union is open, there
exists δ > 0 such that Bδ(S) ⊂ ∪iBδxi (xi) ⊂ N

+
τ .

LEMMA 3.10. Suppose N is a compact set such that Inv(N) ⊂ int (N) with the
property that there are no backward orbits γ−x : T− → N through x ∈ N \ Inv(N).
Then for every ε > 0 there exists τ > 0 such that there are no backward orbit segments
γ−x : [−τ, 0]→ N through x ∈ N \Bε(Inv(N)).

PROOF. Define N−τ = {x ∈ N | ∃ a backward orbit segment γ−x : [−τ, 0]→ N }
for τ > 0, and let ε−τ = supx∈N−τ {d(x, Inv(N))}. First we show that ε−τ → 0 as
τ → ∞. Suppose not, then there exist sequences τn → ∞ and xn ∈ N with xn →
x ∈ N \ Inv(N) and γ−xn : [−τn, 0]→ N . By Lemma 3.8, there exists a backward orbit
γ−x ⊂ N , which is a contradiction. Finally choose τ > 0 large enough so that ε−τ < ε.

LEMMA 3.11. An invariant set A is an attractor if and only if there exists a compact
neighborhood N of A such that there are no backward orbits γ−x : T− → N through x ∈
N \A. In particular, A = Inv(N).

PROOF. Suppose A is an attractor. A compact trapping region N such that A =

ω(N) exists by Lemma 3.17. If there is a backward orbit γ−x ⊂ N with x ∈ N \ A,
then by Proposition 2.11(vii), x ∈ ω(N) = A, a contradiction. The compact trapping
region N is a neighborhood with the required property.
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Now suppose N is a compact neighborhood of A with the the property that no
backward orbits γ−x : T− → N exist through x ∈ N \ A. The latter and the fact that
N is a compact neighborhood of A, implies that A = Inv(N) ⊂ int (N). By Lemma
3.9, there exists δ1 > 0 such that Bδ1(A) ⊂ N and ϕ([0, 1], Bδ1(A)) ⊂ N . Fix ε < δ1
and consider the neighborhood Bε(A). By Lemma 3.10, there exists τ > 0 such that
there are no backward orbit segments γ−x : [−τ, 0]→ N for x ∈ N \Bε(A).

Now we construct an attracting neighborhood forA. By Lemma 3.9, there exists
δ2τ > 0 such that the neighborhood U = Bδ2τ (A) satisfies ϕ([0, 2τ ], U) ⊂ N . We
show that U is an attracting neighborhood. Let V0 = ϕ(τ, U) ⊂ N . For each x ∈ V0

there exists a backward orbit segment γ−x : [−τ, 0] → N . The definition of τ from
Lemma 3.10 implies that V0 ⊂ Bε(A). Moreover, by our choice of ε < δ1 we have
ϕ([0, 1], Bε(A)) ⊂ N so that V1 = ϕ([0, 1], V0) ⊂ N . Thus for each x ∈ V1 there exists
a backward orbit segment γ−x : [−τ − 1, 0]→ N which implies that γ−x ([−τ, 0]) ⊂ N
so that V1 ⊂ Bε(A). We can repeat this argument inductively to prove that Vk =

ϕ([k − 1, k], V0) ⊂ Bε(A) ⊂ N for all k > 0, and thus ϕ([0,∞), U) ⊂ N . Finally,
A ⊂ U implies that A = ω(A) ⊂ ω(U), and ϕ([0,∞), U) ⊂ N implies that ω(U) ⊂
Inv(N) = A. Therefore A = ω(U), and A is an attractor by Proposition 3.5.

Proof of Proposition 3.7. Let N be a (compact) attracting neighborhood for A in X .
There exists a neighborhood N ′ ⊂ N of A′ in X such that N ′ ∩ A is an attracting
neighborhood for A′ in A. Indeed, since A′ an attractor in A there exists a neigh-
borhood Ñ ′ ⊃ A′ in A, such that ω(Ñ ′, ϕ|A) = A′. Choose N ′ ⊂ N such that
A′ ⊂ N ′ ∩A ⊂ Ñ ′, then

A′ = ω(A′, ϕ|A) ⊂ ω(N ′ ∩A,ϕ|A) ⊂ ω(Ñ ′, ϕ|A) = A′,

which shows that N ′ ∩A is an attracting neighborhood for A′ in A.
Suppose that γ−x is a backward orbit through x ∈ N ′ \ A′ such that γ−x ⊂ N ′.

By Proposition 2.11(vii) this implies that x ∈ ω(N ′) ⊂ ω(N) = A. Indeed the same
holds for all y ∈ γ−x , which yields γ−x ⊂ A, and therefore γ−x ⊂ N ′ ∩ A. Proposition
2.11(vii) again implies that x ∈ ω(N ′ ∩ A) = A′, a contradiction. The criterion in
Lemma 3.11 the reveals that A′ is an attractor for ϕ in X .

3.3. Repellers. A repelling region is a backward invariant set U ⊂ X such that

ϕ(τ, cl (U)) ⊂ int (U) for some τ < 0.

A set R ⊂ X is called an repeller if there exists a repelling region U such that R =

Inv+(U).
As attractors are characterized by attracting neighborhoods, a similar character-

ization can be given for repellers.

PROPOSITION 3.12. A repeller R is a compact, forward-backward invariant set. If U
is a repelling region for R, then R = Inv+(U) = Inv+(cl (U)) = α(U) and R ⊂ int (U).
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PROOF. By Lemma 2.10, repellers are forward-backward invariant. Let U be a
repelling region for R. If R′ = Inv+(cl (U)), then ϕ(t, R′) ⊂ R′, for all t ≥ 0, and in
particular ϕ(−τ,R′) ⊂ R′ (τ < 0 for the definition of repelling region). Therefore,
R′ ⊂ ϕ(τ, ϕ(−τ,R′)) ⊂ ϕ(τ,R′) ⊂ ϕ(τ, cl (U)) ⊂ int (U) ⊂ U . This implies R′ ⊂
Inv+(U) = R ⊂ Inv+

(
cl (U)

)
= R′, which shows that R′ = R.

Since R ∈ Invset±(ϕ), Proposition 2.13(viii) implies that cl (R) ⊂ α(R) = R ⊂
cl (R), and thus cl (R) = R. Furthermore, R = α(R) ⊂ α(U) ⊂ α

(
cl (U)

)
=

Inv+
(
cl (U)

)
= R, which proves that R = α(U).

While the intersection of invariant sets need not be invariant, Lemma 2.9 imme-
diately implies the following result.

PROPOSITION 3.13. If A ∈ Att(ϕ) and R ∈ Rep(ϕ), then A ∩R ∈ Invset(ϕ).

A neighborhood U ⊂ X is a repelling neighborhood if

α(U) ⊂ int (U). (5)

The set of repelling neighborhoods in X is denoted by RNbhd(ϕ). Via repelling
neighborhoods the following characterization of repellers holds.

PROPOSITION 3.14. A setR ⊂ X is a repeller if and only if there exists a neighborhood
U of R such that R = α(U). In particular, U is a repelling neighborhood. Moreover, for
every repelling neighborhood U there exists a repelling region U ′ ⊂ U .

COROLLARY 3.15. Let U ⊂ X be a repelling neighborhood, then R = Inv+(U) =

Inv+(cl (U)) = α(U) is a repeller.

We postpone the proofs of Proposition 3.14 and Corollary 3.15 and a result for
repellers analogous to Proposition 3.7 to Section 3.5, since the arguments are greatly
simplified once the duality between attractors and repellers is established.

3.4. Attractor-repeller pairs. For an attractor A ∈ Att(ϕ), with trapping region
U , the dual repeller of A is defined by

A∗ = Inv+(U c),

For a repeller R ∈ Rep(ϕ), with repelling region U , the dual attractor of R is defined
by

R∗ = Inv(U c).

PROPOSITION 3.16. For an attractor A, the dual repeller A∗ is compact, forward-
backward invariant, and characterized by

A∗ = A⊕ = {x ∈ X |ω(x) ∩A = ∅} , (6)
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and therefore independent of the chosen trapping region for A. Moreover, if X is invariant,
then A∗ is strongly invariant. For a repeller R, the dual attractor R∗ is compact, invariant,
and characterized by

R∗ = R	 =
{
x ∈ X

∣∣∃ γx such that αo(γ−x ) ∩R = ∅
}
, (7)

and therefore independent of the chosen repelling region for R.

PROOF. Let U be trapping region for A, and let A∗ = Inv+(U c). Since A∗ ⊂ U c,
we have cl (A∗) ⊂ cl (U c), and cl (A∗) is forward invariant by Remark 2.12. We
show that cl (A∗) ⊂ U c. Indeed, if x ∈ cl (A∗) ∩U , then since U is a trapping region,
ϕ(τ, x) ∈ int (U) for some τ > 0. However, ϕ(τ, x) ∈ cl (A∗) ⊂ cl (U c), which is a
contradiction. Therefore, A∗ ⊂ cl (A∗) ⊂ Inv+(U c) = A∗, so that A∗ = cl (A∗), and
hence A∗ is compact.

By Proposition 2.16 the set A⊕ is forward-backward invariant. If x ∈ U , then,
since U is a trapping region, ω(x) ⊂ ω(U) = A, and therefore A⊕ ⊂ U c. Since A⊕ is
forward-backward invariant, A⊕ ⊂ Inv+(U c) = A∗. If x ∈ A∗, then ω(x) ⊂ ω(A∗)

and by Proposition 2.11(iii), ω(A∗) = Inv(A∗) ⊂ A∗, so that ω(x) ⊂ A∗ ⊂ U c.
Therefore ω(x) ∩ A = ∅, and thus x ∈ A⊕. Hence A∗ ⊂ A⊕. Combining these
inclusions, A∗ = A⊕.

Let U be a repelling region for R and let R∗ = Inv(U c). By definition R∗ ⊂ U c,
and thus cl (R∗) ⊂ cl (U c). Since R∗ is invariant by definition, cl (R∗) is compact
and invariant, see Remark 2.12. If x ∈ cl (R∗) ∩ U , then, since U is a repelling
region, ϕ(−τ, x) ⊂ int (U) for some τ > 0, i.e. for all backward orbits γ−x it holds
that γ−x (−τ) ∈ int (U). However, since cl (R∗) is invariant, there exists a backward
orbit γ−x ⊂ cl (R∗) ⊂ cl (U c), which is a contradiction. This shows that cl (R∗) ⊂ U c,
and therefore cl (R∗) ⊂ Inv(U c) = R∗, which proves that R∗ = cl (R∗) and R∗ is
compact.

By Proposition 2.16 the set R	 is invariant. If x ∈ U , then there are two
possibilities. Either there is no complete orbit γx through x in X , in which case
x /∈ R	, or since U is a repelling region, every complete orbit γx has the prop-
erty that αo(γ−x ) ⊂ U . The latter statement follows from the fact that αo(γ−x ) is
invariant by Proposition 2.15. Indeed, by definition αo(γ−x ) ⊂ cl (U); since U is
a repelling region, there exists τ > 0 such that ϕ(−τ, cl (U)) ⊂ int (U) ⊂ U , and
hence αo(γ−x ) ⊂ ϕ(−τ, ϕ(τ, αo(γ−x ))) = ϕ(−τ, αo(γ−x )) ⊂ U . Moreover, αo(γ−x ) ⊂ R,
and thus x 6∈ R	. Therefore R	 ⊂ U c. Consequently, since R	 is invariant,
R	 ⊂ Inv(U c) = R∗. If x ∈ R∗, then by invariance there exists an orbit γx ⊂ R∗. By
compactness, αo(γ−x ) ⊂ R∗ ⊂ U c, which implies that x ∈ R	, and thus R∗ ⊂ R	.
Combining these inclusions gives that R∗ = R	.

This proposition allows us to make the following fundamental definition. Given
A ∈ Att(ϕ) or R ∈ Rep(ϕ), the pair (A,A∗), or equivalently (R∗, R), is called an
attractor-repeller pair for ϕ.
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LEMMA 3.17. If U is a trapping region, thenN = cl (U) is also a trapping region, and
N c is a repelling region. If V is a repelling region, then int (V ) is also a repelling region,
and V c is a trapping region.

PROOF. Suppose U is a trapping region and define N = cl (U). Since there
exists τ > 0 such that ϕ(τ, cl (U)) ⊂ int (U), we have ϕ(τ, cl (N)) = ϕ(τ, cl (U)) ⊂
int (U) = int (N). By Remark 2.12 the closure of a forward invariant set is also
forward invariant, so N is a trapping region.

By Proposition 2.5, N c = (cl (U))c = int (U c) is backward invariant. Since N
is a trapping region, there exists a τ > 0 such that ϕ(τ,N) ⊂ int (N). Therefore,
N ⊂ ϕ(−τ, ϕ(τ,N)) ⊂ ϕ(−τ, int (N)) and by taking complements

N c ⊃ ϕ(−τ, int (N))c = ϕ
(
−τ, (int (N))c

)
= ϕ(−τ, cl (N c)).

Since N c is open, int (N c) = N c, which gives ϕ(−τ, cl (N c)) ⊂ N c = int (N c), and
thus N c is a repelling region.

Let V be a repelling region, then, by Proposition 2.5, V c is forward invariant.
By assumption ϕ(τ, cl (V )) ⊂ int (V ), for some τ < 0 and therefore (int (V ))c ⊂
ϕ(τ, cl (V ))c = ϕ(τ, (cl (V ))c) and

ϕ
(
−τ, (int (V ))c

)
⊂ ϕ(−τ, ϕ(τ, (cl (V ))c)) ⊂ (cl (V ))c = int (V c).

Since (int (V ))c = cl (V c), we obtain ϕ(−τ, cl (V c)) ⊂ int (V c), which proves that V c

is a trapping region.
Let W = int (V ). Since there exists τ < 0 such that ϕ(τ, cl (V )) ⊂ int (V ), we

have ϕ(τ, cl (W )) ⊂ ϕ(τ, cl (V )) ⊂ int (V ) = int (W ). Moreover, V c is forward in-
variant by Proposition 2.5, and hence cl (V c) is forward invariant by Remark 2.12.
Thus W = (cl (V c))c is backward invariant by Proposition 2.5. Therefore, W is a
repelling region.

PROPOSITION 3.18. For an attractor A, the dual repeller A∗ is a repeller, and for a
repeller R, the dual attractor R∗ is an attractor. Moreover (A∗)∗ = A and (R∗)∗ = R.

PROOF. Let U be a trapping for A, then by Proposition 3.1, A = Inv(U) =

Inv(cl (U)). By Lemma 3.17, N = cl (U) is also a trapping region, and since A∗ is
independent of the chosen trapping region by Proposition 3.16, we conclude that
A∗ = Inv+(U c) = Inv+(N c). By Lemma 3.17, N c is a repelling region and therefore
A∗ is a repeller. Since N c is a repelling region and (N c)c = N is a trapping region,
(A∗)∗ = Inv((N c)c) = Inv(N) = A.

Let U be a repelling region with R = Inv+(U). By definition, R∗ = Inv(U c).
By Lemma 3.17, U c is a trapping region. Therefore, R∗ is an attractor by defini-
tion. Since U c is a trapping region and (U c)c = U is repelling region, (R∗)∗ =

Inv+((U c)c) = Inv+(U) = R.
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The follow result gives an important characterization of attractor-repeller pairs
which characterizes the dynamics by a simple partial order on the attractor-repeller
pair.

THEOREM 3.19. For A,R ⊂ X the following statements are equivalent.

(i) (A,R) is an attractor-repeller pair.
(ii) A and R are disjoint, compact sets with A ∈ Invset(ϕ) and R ∈ Invset+(ϕ) such

that for every x ∈ X \ (A ∪ R) and every backward orbit γ−x through x we have
αo(γ−x ) ⊂ R and ω(x) ⊂ A.

PROOF. Suppose (A,R) is an attractor-repeller pair, then R = A∗ and A ∈
Invset(ϕ), R ∈ Invset±(ϕ) and both sets are compact by Proposition 3.1. By the
definition of dual repeller it follows that A ∩ A∗ = ∅. By Lemma 3.4 there exists
ε0 > 0 such that ω(Bε(A)) = A for all 0 < ε < ε0. By Equation (6) if x /∈ A ∪ R,
then ω(x)∩A 6= ∅, which implies that there exists τ > 0 such that d(ϕ(τ, x), A) < ε0
by the definition of omega-limit set. Hence ω(x) = ω(ϕ(τ, x)) ⊂ ω(Bε0(A)) = A.
By Proposition 3.5 and Lemma 3.17 there exists a compact trapping region N with
A = Inv(N) and N ⊂ Bmin{ε0,d(x,A)}(A). Lemma 3.17 yields that N c is a repelling
region and R = Inv+(N c). Hence x ∈ N c implies γ−x ⊂ N c whenever such a back-
ward orbit exists. Moreover, since αo(γ−x ) is invariant with αo(γ−x ) ⊂ cl (N c) and
N c is a repelling region, we have αo(γ−x ) ⊂ Inv(N c) ⊂ Inv+(N c) = R, which proves
that (i) implies (ii).

SupposeA andR are disjoint, compact, forward invariant sets inX , and ω(x) ⊂
A for every x ∈ X \ (A ∪ R), then R = A⊕. Indeed, if x ∈ R, then by forward
invariance and compactness of R, we have ω(x) ⊂ ω(R) ⊂ R. Since A ∩ R = ∅
this implies ω(x) ∩ A = ∅, and therefore R ⊂ A⊕. Conversely, if x ∈ A⊕, then
ω(x) ∩ A = ∅. By assumption this implies that x ∈ A ∪ R. Moreover, A is compact
and forward invariant and thus x ∈ A, implies ω(x) ⊂ ω(A) ⊂ A. Consequently,
x ∈ A⊕ implies x ∈ R and therefore A⊕ ⊂ R. Summarizing R = A⊕.

If A is an attractor, then Equation (6) implies R = A∗ is its dual repeller, and
hence (A,R) is an attractor-repeller pair. We now show that A is an attractor. Fix a
compact neighborhood U of A such that A ⊂ int (U) and U ∩ R = ∅. If x ∈ U \ A
and γ−x is a backward orbit through x, then by (ii), since x ∈ X \ (A ∪ R), we have
αo(γ

−
x ) ⊂ R, and hence γ−x 6⊂ U . Lemma 3.11 implies that A is an attractor.

REMARK 3.20. Note that in Condition (ii) of Theorem 3.19 R is not a priori re-
quired to be forward-backward invariant. The combination with the other assump-
tions in (ii) implies that R = A⊕, and therefore R is forward-backward invariant as
a consequence. If we assume in (ii) that both A and R are forward invariant, then
(Inv(A), R) is an attractor-repeller pair.
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3.5. Consequences of duality. We can use the characterization of attractor-
repeller pairs in Theorem 3.19 to give an alternative characterization of attracting
neighborhoods of an attractor in terms of the dual repeller.

PROPOSITION 3.21. Let A ∈ Att(ϕ). A subset U ⊂ X is an attracting neighborhood
for A if and only if U is a neighborhood of A and cl (U) ∩A∗ = ∅.

PROOF. Let U be an attracting neighborhood with A = ω(U). Then by Proposi-
tion 3.5, we have A ⊂ int (U). By Proposition 2.11(vi), we have A = ω(cl (U)) and
by Lemma 3.2, cl (U) is an attracting neighborhood for A. Therefore, ω(x) ⊂ A for
all x ∈ cl (U), and cl (U) ∩A∗ = ∅ by Equation (6).

Let A ⊂ int (U) and cl (U)∩A∗ = ∅. By Theorem 3.19, we have ω(x) ⊂ A for all
x ∈ cl (U). Thus by continuity, for each x ∈ cl (U) there exists τx ≥ 0 and δx > 0 such
that ϕ(t, Bδx(x)) ⊂ U for all t ≥ τx. By compactness, there exists τ ≥ 0 such that
ϕ(t, x) ∈ U for all t ≥ τ and x ∈ cl (U), i.e. ϕ(t, cl (U)) ⊂ U for all t ≥ τ . By Propo-
sition 2.11(iii) and (vi) this implies that ω(U) = ω(cl (U)) = Inv(cl (U)) ⊂ cl (U). In
particular ω(U) ∩ A∗ = ∅. Now (ω(U), A∗) is a pair of disjoint, compact sets with
ω(U) ∈ Invset(ϕ) and A∗ ∈ Invset±(ϕ) which satisfy property (ii) in Theorem 3.19.
Indeed, A ⊂ int (U) ⊂ U , which implies A = ω(A) ⊂ ω(U), and since (A,A∗) satis-
fies (ii), also (ω(U), A∗) satisfies this property. Theorem 3.19 implies that (ω(U), A∗)

is an attractor-repeller pair, and hence A = ω(U) by Proposition 3.18. Therefore, U
is an attracting neighborhood for A, since ω(U) = A ⊂ int (U).

COROLLARY 3.22. The map Inv : ANbhd(ϕ) → Att(ϕ), restricted to the compact at-
tracting neighborhoods, is continuous in the Hausdorff metric. Indeed, it is locally constant.

PROOF. Let U, V be compact sets in ANbhd(ϕ) and define d(U, V ) =

dist Hausdorff(U, V ). Let A = Inv(U) be the attractor in U . By Proposition 3.21,
U ∩ A∗ = ∅. Since U and A∗ are compact, dist (U,A∗) = δ1 > 0. Also,
since U is a neighborhood of A, there exists δ2 > 0 such that Bδ2(A) ⊂ U . Let
δ = min{δ1/2, δ2/2}. Then for any neighborhood V with d(U, V ) < δ we have that
A ⊂ V and V ∩ A∗ = ∅. Therefore, A = Inv(V ) by Proposition 3.21, which proves
the result.

By a similar argument, Inv+ : RNbhd(ϕ) → Rep(ϕ) is also locally constant on
the compact repelling neighborhoods, using Proposition 3.25 below.

LEMMA 3.23. If U ⊂ X is an attracting neighborhood for an attractor A = ω(U),
then U c is a neighborhood of A∗, with cl (U c) ∩A = ∅ and A∗ = Inv+(U c) = α(U c).

PROOF. By Proposition 3.21 an attracting neighborhood U of A satisfies cl (U)∩
A∗ = ∅. It follows that A∗ ⊂ (cl (U))c and since int (U c) = (cl (U))c, we have
A∗ ⊂ int (U c) ⊂ U c. This shows that U c is a neighborhood of A∗. Since A ⊂
int (U), it follows that A ∩ (int (U))c = ∅, and by cl (U c) = (int (U))c we derive that
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cl (U c) ∩ A = ∅. Let U ′ ⊂ U be a trapping region for A. By Lemma 3.17, U ′ can
taken to be a compact trapping region and U ′c is a repelling region. By definition,
A∗ = Inv+(U ′c) and by Proposition 3.12 A∗ = Inv+(U ′c) = α(U ′c) ⊃ α(U c). Since
A∗ ⊂ U c, we have by Proposition 2.13(viii) that A∗ = α(A∗) ⊂ α(U c), which proves
that A∗ = α(U c). Since α(U c) ⊂ U c, Proposition 2.13(vi) implies α(U c) = Inv+(U c).

Now recall Proposition 3.14 which states that a set R ⊂ X is a repeller if and
only if there exists a neighborhood U of R such that R = α(U). In particular, U is a
repelling neighborhood and for every U there exists a repelling region U ′ ⊂ U .

Proof of Proposition 3.14. If R is a repeller, then there exists a repelling region U such
that R = Inv+(U) = α(U) ⊂ int (U) by Proposition 3.12.

Let U ⊂ X be a repelling neighborhood such that R = α(U) ⊂ int (U). We now
show that R is a repeller. By Proposition 2.13(i), R is compact and R ∈ Invset+(ϕ).
Since R ⊂ int (U), it follows that Rc ⊃

(
int (U)

)c
= cl (U c). This implies that we

have two compact sets cl (U c) and R, such that

cl (U c) ∩R = ∅.

Since X is a compact metric space, there exists a compact neighborhood V for R,
such that cl (U c) ∩ V = ∅. The latter implies that V ⊂

(
cl (U c)

)c
= int (U), and

hence
R ⊂ int (V ) ⊂ V ⊂ int (U) ⊂ U. (8)

Since R is compact and R ∈ Invset+(ϕ), Proposition 2.13(iv) and (viii) imply that

R = cl (R) ⊂ α(R) ⊂ α(V ) ⊂ α(U) = R,

and thusR = α(V ) ⊂ int (V ). By the definition of alpha-limit set there exists a τ < 0

such that cl (ϕ((−∞, τ ], V )) ⊂ int (V ), and thus, since V is compact,

ϕ(t, cl (V )) = ϕ(t, V ) ⊂ cl (ϕ(t, V )) ⊂ int (V ), ∀ t ≤ τ.

The latter yields (int (V ))c ⊂ ϕ(t, cl (V ))c = ϕ(t, (cl (V ))c), for t ≤ τ < 0, and
consequently,

ϕ
(
−t, (int (V ))c

)
⊂ ϕ

(
−t, ϕ(t, (cl (V ))c)

)
⊂ (cl (V ))c = int (V c).

Since (int (V ))c = cl (V c), we obtain ϕ(−t, cl (V c)) ⊂ int (V c), for all −t ≥ −τ > 0.
Lemma 3.2 yields that V c is an attracting neighborhood, with ω(V c) ⊂ int (V c). By
Proposition 3.5, A = ω(V c) is an attractor, and by Lemma 3.23, A∗ = α(V ) = R,
which proves that R is a repeller.

Finally we show that there exists a repelling region U ′ ⊂ U , for every repelling
neighborhood U for R. From (8) we obtain

U c ⊂ cl (U c) ⊂ V c ⊂ cl (V c) ⊂ Rc,
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and we defineW = cl (V c), which is a compact neighborhood ofA = ω(V c) = ω(W )

and W ∩ R = ∅. Proposition 3.21 yields that W is an attracting neighborhood
for A, and by Lemma 3.2 there exists a τ > 0, such that ϕ(t,W ) ⊂ int (W ) for all
t ≥ τ . By construction W ′ = ϕ([0, τ ],W ) ⊃ W is a compact, forward invariant set,
cf. Proposition 3.5. Another property of W ′ is that W ′ ∩R = ∅. Indeed, if not, then
there would exist a point x ∈ W and a time 0 < t0 < τ , such that ϕ(t0, x) ∈ R.
Furthermore, ϕ(t, ϕ(t0, x)) = ϕ(t+ t0, x) ∈ int (W ) for all t ≥ τ − t0. However, since
R is forward invariant, ϕ(t, ϕ(t0, x)) ∈ R for all t ≥ 0, which is a contradiction. By
Proposition 3.21 we conclude that W ′ is a attracting neighborhood. Combining this
with the fact that W ′ is forward invariant, Lemma 3.3 yields that W ′ is a trapping
region forA. By Lemma 3.17 and Lemma 3.23 we have that U ′ = (W ′)c is a repelling
region for R = A∗. Since U c ⊂ W ⊂ W ′, it follows that U ′ ⊂ U , which completes
the proof.

COROLLARY 3.24. A setU is an attracting neighborhood if and only ifU c is a repelling
neighborhood.

PROOF. Combine Proposition 3.14 and Lemma 3.23.

PROPOSITION 3.25. Let R ∈ Rep(ϕ) be a repeller. A subset U ⊂ X is an repelling
neighborhood for R if and only if U is a neighborhood of R and cl (U) ∩R∗ = ∅.

PROOF. If U is a repelling neighborhood for A∗ = R = α(U) ⊂ int (U), then
cl (U c) ∩ A∗ = ∅, which implies that U c is an attracting neighborhood for A =

Inv(U c). Thus, by Lemma 3.23, cl (U) ∩A = cl (U) ∩R∗ = ∅.
IfU is a neighborhood ofRwith cl (U)∩R∗ = ∅, then cl (U c)∩R = cl (U c)∩A∗ =

∅, and therefore U c is an attracting neighborhood with A = Inv(U c). Consequently,
U is a repelling neighborhood for R by Corollary 3.24.

COROLLARY 3.26. If U ⊂ X is a repelling neighborhood, then also cl (U) and int (U)

are repelling neighborhoods and R = α(U) = α(cl (U)) = α(int (U)).

PROOF. The complement U c is an attracting neighborhood by Corollary 3.24.
Lemma 3.2 then yields that also int (U c) and cl (U c) are attracting neighborhoods.
Consequently, cl (U) = (int (U c))c and int (U) = (cl (U c))c are repelling neigh-
borhoods. Since A = R∗ = ω(U c) = ω(cl (U c)) = ω(int (U c)), we have that
α(cl (U)) = A∗ = R and α(int (U)) = A∗ = R.

COROLLARY 3.27. Let U ⊂ X be a repelling neighborhood for a repeller R = α(U),
and let U ′ ⊂ X be a neighborhood of R such that R ⊂ U ′ ⊂ cl (U). Then also U ′ is a
repelling neighborhood with R = α(U ′).
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PROOF. Since cl (U ′) ⊂ cl (U), we have cl (U ′) ∩R∗ = ∅.

Proof of Corollary 3.15. If U is an repelling neighborhood, then R = α(U) ⊂ int (U) is
a repeller, which is compact and invariant. To show that R is the maximal forward
invariant set in U , suppose that S is a forward invariant set in U satisfying R ⊂ S ⊂
U . Then, since R is forward-backward invariant,

R = cl (R) = α(R) ⊂ α(S) ⊂ α(U) = R,

and consequently S ⊂ cl (S) ⊂ α(S) = R by Proposition 2.13(viii), and thus
R = S. This proves that R = Inv+(U). Using duality, Corollary 3.26 states
that α(U) = α(cl (U)), and therefore the the same reasoning as above implies that
R = Inv+(cl (U)).

PROPOSITION 3.28. If R ⊂ X is a repeller and R′ ⊂ R is a repeller for ϕ|R, then R′

is a repeller (for ϕ).

PROOF. By definition R ∈ Invset±(ϕ) and for the dual attractor to R we have
A = R∗ ∈ Invset(ϕ). Let A′ be the dual attractor of R′ inside R with respect to ϕ|R.
Consider the dual set

R′	 = {x ∈ X | ∃γx such that αo(γ−x ) ∩R′ = ∅},

which, by Proposition 2.16, is invariant. Then, since R ∈ Invset±(ϕ) and R′ ∈
Invset±(R), it follows that R′ ∈ Invset±(ϕ), and R′ is compact. The former follows
from the fact that ϕ|R(t, x) = ϕ(t, x) for all (t, x) ∈ T×R.

If x ∈ A, the invariance ofA implies that the exists an orbit γx ⊂ A, and therefore
A ⊂ R′	. Similarly, if x ∈ A′, the invariance of A′ implies that there exists an orbit
γx ⊂ A′, and consequently A′ ⊂ R′	. This implies that

A ∪A′ ⊂ R′	.

By Proposition 2.16 the forward-backward invariance and compactness of R′

implies that R′	 ∩ R′ = ∅. Therefore we can choose a compact neighborhood N

of R′	, such that N ∩ R′ = ∅. Let x ∈ N \ R′	, then x ∈ X \ R′	, which implies
that αo(γ−x ) ∩ R′ 6= ∅ for all orbits γx, and therefore there are no backward orbits
γ−x : T− → N . By Lemma 3.11 we conclude that R′	 is an attractor in X .

By Proposition 3.16, the dual repeller in X of R′	 is R′	∗ = {x ∈ X | ω(x) ∩
R′	 = ∅}. If x ∈ R′, then, sinceR′ is forward-backward invariant inX , it holds that
ω(x) ⊂ R′. Since R′ ∩ R′	 = ∅, we conclude that R′ ⊂ R′	∗. Suppose x ∈ R′	∗ ⊂
X \R′	. If x ∈ X \ (R′	∪R), then from Theorem 3.19, we have ω(x) ⊂ A. Similarly,
if x ∈ R \ (R′	 ∪R′) = R \ (A′ ∪R′), then ω(x) ⊂ A′. In both cases ω(x) ∩R′	 6= ∅.
On the other hand R′	∗ is a repeller and therefore is forward-backward invariant,
which implies ω(x) ⊂ R′	∗ ⊂ X \ R′	, a contradiction. We therefore conclude that
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x ∈ R′, and thus R′	∗ ⊂ R′. Combining the inclusions we obtain R′	∗ = R′, which
proves that R′ is a repeller in X .

4. Lattices of attractors, repellers, and their neighborhoods

Recall that the defining property of an attracting neighborhood U is that ω(U) ⊂
int (U), and for attracting neighborhoods ω(U) = Inv(U). The set of attracting
neighborhoods ANbhd(ϕ) has additional structure as a distributive lattice.

PROPOSITION 4.1. The set ANbhd(ϕ) is a bounded, distributive lattice with respect
to the binary operations ∨ = ∪ and ∧ = ∩. The neutral elements are 0 = ∅ and 1 = X .

PROOF. The elements ∅ and X are attracting neighborhoods. Let U,U ′ be at-
tracting neighborhoods for attractors A,A′ respectively. Then U ∪U ′ and U ∩U ′ are
neighborhoods of A∪A′ and A∩A′ respectively. From Proposition 2.11(v) we have

ω(U ∪ U ′) = ω(U) ∪ ω(U ′) = A ∪A′

⊂ int (U) ∪ int (U ′) ⊂ int (U ∪ U ′), (9)

which implies that U ∪ U ′ ∈ ANbhd(ϕ).
By Proposition 2.11(iv) and (v), we have

ω(U ∩ U ′) ⊂ ω(U) ∩ ω(U ′) = A ∩A′.

From Proposition 2.11(viii), since ω(U ∩ U ′) is compact and invariant, we deduce
that

ω(A ∩A′) ⊂ ω(U ∩ U ′) = ω(ω(U ∩ U ′)) ⊂ ω(A ∩A′).
Hence

ω(U ∩ U ′) = ω(A ∩A′) ⊂ int (U) ∩ int (U ′) = int (U ∩ U ′), (10)

which proves that U ∩ U ′ ∈ ANbhd(ϕ). The distributivity follows since ANbhd(ϕ) is
a sublattice of P(X) and thus is a lattice of sets.

The same arguments can be made for repelling neighborhoods RNbhd(ϕ) and
alpha-limit sets.

PROPOSITION 4.2. The set RNbhd(ϕ) is a bounded, distributive lattice with respect
to the binary operations ∨ = ∪ and ∧ = ∩. The neutral elements are 0 = ∅ and 1 = X .

PROOF. The elements ∅ and X are repelling neighborhoods. Let U,U ′ be re-
pelling neighborhoods for repellers R,R′ respectively. Then U ∪ U ′ and U ∩ U ′ are
neighborhoods of R∪R′ and R∩R′ respectively. From Proposition 2.13(v) we have

α(U ∪ U ′) = α(U) ∪ α(U ′) = R ∪R′

⊂ int (U) ∪ int (U ′) ⊂ int (U ∪ U ′), (11)

which implies that U ∪ U ′ ∈ RNbhd(ϕ).
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From Proposition 2.13(viii) we deduce, since R ∩ R′ ∈ Invset±(ϕ) and R ∩ R′ is
compact, that R∩R′ = α(R∩R′) ⊂ α(U ∩U ′). From Proposition 2.13(iv) and (v) we
derive that α(U ∩U ′) ⊂ α(U)∩α(U ′) = R∩R′ so that α(U ∩U ′) = R∩R′. Therefore

α(U ∩ U ′) = R ∩R′ ⊂ int (U) ∩ int (U ′) = int (U ∩ U ′), (12)

which proves that U ∩ U ′ ∈ RNbhd(ϕ). The distributivity follows since RNbhd(ϕ) is
a sublattice of P(X) and thus is a lattice of sets.

Next, using the mapping ω : ANbhd(ϕ) → Att(ϕ), defined by U 7→ ω(U), we
establish that Att(ϕ) is a lattice, and ω is a lattice homomorphism.

PROPOSITION 4.3. The set Att(ϕ) is a sublattice of Invset(ϕ) and the mapping ω :

ANbhd(ϕ)→ Att(ϕ) is surjective homomorphism.

PROOF. Let A = ω(U) and A′ = ω(U ′) be attractors with attracting neigh-
borhoods U and U ′ respectively. Recall that the lattice operations in Invset(ϕ) are
defined by ∨ = ∪ and S ∧ S′ = Inv(S ∩ S′). Since A,A′ ∈ Invset+(ϕ), we have
A ∩ A′ ∈ Invset+(ϕ) so that ω(A ∩ A′) = Inv(A ∩ A′) by Proposition 2.11(iii). From
Equations (9) and (10) we have the identities A ∨ A′ = A ∪ A′ = ω(U ∪ U ′) and
A ∧ A′ = ω(A ∩ A′) = Inv(A ∩ A′) = ω(U ∩ U ′). Therefore Att(ϕ) is a sublattice
of Invset(ϕ), and ω is a lattice homomorphism. Also, ω(X) is the maximal element
in Invset(ϕ) and ω(∅) = ∅ is the minimal element in Invset(ϕ), which proves that
Att(ϕ) is a sublattice and ω a homomorphism. Surjectivity follows from Proposi-
tion 3.5.

Note that since Att(ϕ) is a sublattice of Invset(ϕ), the attractors are ordered by
set inclusion. We have a the same results for Rep(ϕ) and α : RNbhd(ϕ)→ Rep(ϕ).

PROPOSITION 4.4. The set Rep(ϕ) is a sublattice of Invset±(ϕ) and the mapping
α : RNbhd(ϕ)→ Rep(ϕ) is surjective homomorphism.

PROOF. Let R = α(U) and R′ = α(U ′) be repellers with repelling neighbor-
hoods U and U ′ respectively. From Equations (11) and (12) we have the identities
R ∨ R′ = R ∪ R′ = α(U ∪ U ′) and R ∧ R′ = R ∩ R′ = α(U ∩ U ′), which shows that
Rep(ϕ) is a sublattice of Invset(ϕ). Also, α(X) is the maximal element in Invset±(ϕ)

and α(∅) = ∅ is the minimal element in Invset±(ϕ), which proves that Rep(ϕ) is a
sublattice and α is a homomorphism. Surjectivity follows from Proposition 3.14.

REMARK 4.5. Recall now that Inv(X) = ω(X) = 1 and ∅ = 0 are the neutral el-
ements in Att(ϕ). For repellers Inv+(X) = α(X) = X = 1 and ∅ = 0 are the neutral
elements in Rep(ϕ). Since X ∈ Invset+(ϕ), it follows from Proposition 2.13(viii) that
X ⊂ α(X) ⊂ X and thus α(X) = X .

PROPOSITION 4.6. The mapping c : ANbhd(ϕ)→ RNbhd(ϕ), defined by U 7→ U c is
a lattice anti-isomorphism.
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PROOF. By Corollary 3.24 the complement of an attracting neighborhood is a
repelling neighborhood and vice versa, which implies that the mapping c is well-
defined and bijective. Since the lattice operations are ∪ and ∩, DeMorgan’s laws
imply that c is lattice anti-isomorphism.

Define the mappings ∗ : Att(ϕ) → Rep(ϕ) and ∗ : Rep(ϕ) → Att(ϕ) by A =

ω(U) 7→ A∗ = α(U c) and R = α(U) 7→ R∗ = ω(U c) respectively.

PROPOSITION 4.7. The mappings ∗ : Att(ϕ) → Rep(ϕ) and ∗ : Rep(ϕ) → Att(ϕ)

are lattice anti-isomorphisms with (A∗)∗ = A and (R∗)∗ = R.

PROOF. From Propositions 4.3 and 4.4

(A ∪A′)∗ =
(
ω(U) ∪ ω(U ′)

)∗
=
(
ω(U ∪ U ′)

)∗
= α((U ∪ U ′)c) = α(U c ∩ U ′c) = α(U c) ∩ α(U ′c)

= A∗ ∩A′∗.

Similarly

(A ∧A′)∗ =
(
ω
(
ω(U) ∩ ω(U ′)

))∗
=
(
ω(U ∩ U ′)

)∗
= α((U ∩ U ′)c) = α(U c ∪ U ′c) = α(U c) ∪ α(U ′c)

= A∗ ∪A′∗.

Therefore the mapping ∗ : Att(ϕ) → Rep(ϕ) is a lattice anti-homomorphism. More-
over, it is an anti-isomorphism by Proposition 3.18. The proof for ∗ : Rep(ϕ) →
Att(ϕ) is analogous.

The above propositions are summarized in the commutative diagram (1).

5. Lifting attractor and repeller lattices

DEFINITION 5.1. Let K, L be bounded, distributive lattices, let h : K → L be
a lattice homomorphism and let ` : L′ → L be a lattice homomorphism. A lattice
homomorphism k : L′ → K is a lift of ` through h, if h ◦ k = ` or equivalently the
following diagram commutes:

K

L′ L

����

h

// //`
??

??

k (13)

Observe that using this language the result of Theorem 1.2 can be restated as
the existence of the lift of the embedding of a finite sublattice in Att(ϕ) or Rep(ϕ)

through Inv or Inv+.
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Using Birkhoff’s Representation Theorem we recast the lifting diagram (13) as

K

O(J(L′)) L′ L

����

h

77

77

k

//oo
↓∨

// //`

(14)

Observe that since ↓∨ is an isomorphism, if we prove the existence of k which makes
the (14) commute, then k ◦ ↓∨ provides a lift of `. To simplify the notation, in what
follows let P = J(L′) and let s = ` ◦ (↓∨)−1. In this language our goal is to find a lift
k of s through h:

K

O(P) L

����

h

// //s
??

??

k
(15)

REMARK 5.2. Let P be a poset. Let λ ∈ O(P). By definition λ is a down set in P

and hence can simultaneously be viewed as a subset of P.

LEMMA 5.3. Let a, b, c be elements in a Boolean algebra B. Then

c ∧ bc ∧ a = 0 ⇐⇒ c ∧ a ≤ b. (16)

PROOF. 0 = c ∧ bc ∧ a = (c ∧ a) ∧ bc, which is equivalent to c ∧ a ≤ b by (2).

Observe that if k : O(P) → K is a lift, and α, β, γ ∈ O(P), then (16) can be re-
written as

γ ∩ α ⊂ β ⇔ k(γ) ∧ k(α) ≤ k(β). (17)

Let λ ∈ O(P). Note that 0 ∈ O(λ). However, if λ 6= P, then P /∈ O(λ), and hence
O(λ) is not a sublattice of O(P). Therefore we define λ> to be the poset λ ∪ {>}
where the additional top element > has relations p ≤ > for all p ∈ λ. Then

O(λ>) ≈ {α ∈ O(P) | α ⊂ λ or α = P}

making O(λ>) a sublattice of O(P). This implies that the Booleanization B(O(λ>)) ⊂
B(O(P)) = 2P.

DEFINITION 5.4. Let λ ∈ O(P). A lattice homomorphism k : O(λ>) → K is a
partial lift of s on O(λ>) if

h(k(β)) = s(β) for all β ≤ λ.

Note that by the above definition k(1) = 1, since k is a lattice homomorphism.
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DEFINITION 5.5. A partial lift is a conditional lift of s on O(λ>) if there exists{
vα ∈ h−1 (s(α)) | α ∈ O(P)

}
such that

k(γ) ∧ vα ≤ k(β) (18)

for all β, γ ⊂ λ for which γ ∩ α ⊂ β. The elements vα are called conditioners for the
partial lift k : O(λ>)→ K.

REMARK 5.6. Let k be a conditional lift of s on O(λ>). The following statements
indicate possible choices for conditioners.

(1) If α ⊂ λ, then k(α) is a conditioner.
(2) If γ ∩ α 6⊂ β, then any vα ∈ h−1 (s(α)) is a conditioner.
(3) Assume vα ∈ h−1 (s(α)) is a conditioner. If v′α ∈ h−1 (s(α)) and v′α ≤ vα,

then v′α is a conditioner.

We make use of the following equivalent characterization of a conditional lift.

PROPOSITION 5.7. Let k : O(λ>) → K be a partial lift. Then, k is a conditional
lift with conditioners

{
vα ∈ h−1 (s(α)) | α ∈ O(P)

}
if and only if for any p ∈ λ and any

α ∈ O(P) such that p 6∈ α
B(k)({p}) ∧ vα = 0.

PROOF. If k is a conditional lift, then we have the existence of a set{
vα ∈ h−1 (s(α)) | α ∈ O(P)

}
on which (18) is satisfied. Let γ =↓ p and let β = ←−γ .

Observe that β, γ ⊂ λ and γ ∩ α ⊂ β, thus

k(γ) ∧ vα ≤ k(β) ⇔ k(γ) ∧ k(β)c ∧ vα = 0 by Lemma 5.3

⇔ B(k)(γ ∧ βc) ∧ vα = 0

⇒ B(k)({p}) ∧ vα = 0. (19)

To prove the converse, consider β, γ ⊂ λ such that γ ∩ α ⊂ β. Observe that

B(k)(γ ∩ βc) =
∨

p∈γ∩βc
B(k)({p})

B(k)(γ ∩ βc) ∧ vα =
∨

p∈γ∩βc
B(k)({p}) ∧ vα = 0

and we can now return to the equivalences of (19).

DEFINITION 5.8. Let K, L be bounded, distributive lattices. A lattice epimor-
phism h : K → L is spacious, if the following two conditions hold for every lattice
embedding s : O(P)→ L.

(i) For every minimal q ∈ P, every partial lift k : O({q}>)→ K of s on O({q}>)

is a conditional lift on O({q}>).
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(ii) For every λ ∈ O(P) and every partial lift k : O(λ>)→ K of s on O(λ>) and
any minimal q ∈ P \ λ, there exists{

vα ∈ h−1(s(α)) | for all α ∈ O(P)
}

such that for all α 63 q

vµ ∧ vα ≤ k(λ) where µ :=↓q. (20)

PROPOSITION 5.9. Let h : K → L be a surjective, lattice homomorphism between
bounded, distributive lattices. If h−1(0) = 0, then Condition (i) of Definition 5.8 is satisfied.

PROOF. For any α ∈ P, choose vα ∈ h−1(s(α)). We remark that this implies
that v0 = 0. Let s : O(P) → L be a lattice embedding, and let q ∈ P be minimal.
Let k : O({q}) → K be a partial lift of s. Since q is minimal, if β, γ ⊂ {q}, then
γ, β ∈ {∅, {q}}. If γ = {q} and β = ∅, then

h(k({q}) ∧ vα) = h(k({q})) ∧ h(vα) = s({q}) ∧ s(α) = s ({q} ∩ α)) = s(0) = 0

for all q 6∈ α. Since h−1(0) = 0, this implies that k({q}) ∧ vα = 0, for all q 6∈ α. If
γ = β = {q}, then

k(γ) ∧ vα = k({q}) ∧ vα ≤ k({q}) = k(β),

and if γ = β = ∅, then

k(γ) ∧ vα = k(0) ∧ vα = 0 ∧ vα = 0 = k(β),

which proves the lemma.

COROLLARY 5.10. Inv : ANbhd(ϕ)→ Att(ϕ) satisfies Condition (i) of Definition 5.8.
If ϕ is surjective, then Inv+ : RNbhd(ϕ)→ Rep(ϕ) satisfies Condition (i) of Definition 5.8.

PROOF. By Proposition 2.11(ii) if U ∈ ANbhd(X) and U 6= ∅, then Inv(U,ϕ) 6=
∅. By Proposition 2.13(ii) if ϕ is surjective, then U ∈ RNbhd(X) and U 6= ∅ implies
Inv+(U,ϕ) 6= ∅.

EXAMPLE 5.11. To show that Inv : ANbhd(X) → Att(X) is not in general spa-
cious, we consider a semi-flow ϕ on a 1-dimensional graph as shown in Fig-
ure 1[left] with fixed points {1, 2, 3}. The lattice of attractors Att(ϕ) is indicated
in Figure 1[right]. Consider L′ = Att(ϕ). Then J(L′) = P = {1, 2, 3} with the order
described in Figure 1[middle].

Choose λ = {1}. Observe that q = 2 is a minimal element in P \ λ = {2, 3}.
Let µ =↓ q =↓ 2 = {1, 2}. Consider the down set α = {1, 3}, and note that 2 6∈ α.
Furthermore,

µ ∧ α = {1, 2} ∩ {1, 3} = {1} .
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Let k : O({1}) → ANbhd(X) be a partial lift such that k({1}) is the attracting neigh-
borhood for s({1}) indicated in Figure 1 by a thick line. For every choice of attract-
ing neighborhoods V{1,2} and V{1,3} of s({1, 2}) and s({1, 3}) respectively, we have
that

k({1}) ( V{1,2} ∩ V{1,3} = s({1, 2}) ∧ s({1, 3}),
contradicting (20). Since the spacious condition has to be satisfied for all partial lifts,
we conclude that Inv : ANbhd(X)→ Att(X) is not spacious in general.
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FIGURE 1. A 1-dimensional semi-flow [left], the order of fixed
points [middle], and the lattice of attractors [right].

PROPOSITION 5.12. Inv+ : RNbhd(ϕ)→ Rep(ϕ) is spacious.

PROOF. Let s : O(P) → Rep(X) be a lattice embedding for some finite poset P.
Let q ∈ P be minimal. Assume k : O({q}>)→ RNbhd(ϕ) is a partial lift of s. We need
to show that k is a conditional lift on O({q}>).

We make two observations concerning α ∈ O(P) for which q 6∈ α. First, via (17)

s({q}) ∧ s(α) = s({q} ∩ α) = s(0) = 0,

and second, there exists a compact neighborhood Nα ⊂ X of s(α) such that
k({q}) ∩ Nα = ∅. Let Wα ∈ RNbhd(ϕ) be a repelling neighborhood for s(α). By
Corollary 3.27, vα := Wα ∩ Nα is a repelling neighborhood of s(α), i.e. Inv+(vα) =

s(α), and furthermore
k({q}) ∧ vα = 0.

Since q is minimal, if β, γ ⊂ {q}, then γ, β ∈ {∅, {q}}. If γ = {q} and β = ∅, then

k({q}) ∧ vα = 0 = k(0) = k(β).
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for all q 6∈ α. If γ = β = {q}, then

k(γ) ∧ vα = k({q}) ∧ vα = 0 ≤ k(β).

If γ = β = ∅, then

k(γ) ∧ vα = k(0) ∧ vα = 0 ∧ vα = 0 = k(β).

Thus the partial lift k satisfies Definition 5.8(i). We now verify Definition 5.8(ii). Let
λ ∈ O(P) and let q ∈ P \ λ be minimal. Define µ =↓q. Let k : O(λ>)→ RNbhd(ϕ) be
a partial lift.

As above let α ∈ O(P) for which q 6∈ α. Observe that µ ∩ λc ∩ α = ∅, hence by
(17) µ ∩ α ⊂ λ. In particular,

s(µ ∩ α) ≤ s(λ) ⊂ int (k(λ)).

Since [int (k(λ))]c and s(µ ∩ α) are disjoint compact sets there exists ε(α) > 0 such
that

dist (s(µ ∩ α), [int (k(λ))]c) = ε(α).

Define ε := min {ε(α) | q 6∈ α}. Choose {Wξ | ξ ∈ O(P)} ⊂ RNbhd(ϕ) such that Wξ is
a repelling neighborhood for s(ξ). By Remark 5.6 we can define the conditioners as
follows:

vξ :=


k(ξ) if ξ ≤ λ,

Wξ ∩Bε/2(s(ξ)) if q 6∈ ξ or ξ = µ,

Wξ if q ∈ ξ and ξ 6= µ.

By Corollary 3.27, vξ ∈ RNbhd(ϕ) for all ξ ∈ O(P). By construction, vµ ∩ vα ⊂
int (k(λ)) ⊂ k(λ), and hence

vµ ∧ vα ≤ k(λ).

Thus (20) is satisfied and hence Inv+ : RNbhd(X)→ Rep(X) is spacious.

For spacious lattice homomorphisms we obtain the following lifting theorem.

THEOREM 5.13. Let K and L be a bounded, distributive lattices, and let h : K → L be
a lattice epimomorphism. If h is spacious and h−1(1) = 1, then every lattice embedding
s : O(P)→ L, with P is finite, admits a lift.

PROOF. We construct the desired lift k : O(P) → K inductively. To begin set
k(0) = 0. Let q ∈ P be minimal. Define λ =↓ q = {q} ∈ O(P). Choose k(λ) ∈
h−1(s(λ)). Observe that k : O(λ>)→ K is a partial lift. Condition (i) of Definition 5.8
implies that k is conditional.

To perform the inductive step, let λ ∈ O(P) and assume k : O(λ>) → K is a
conditional lift of s. Let

{
v0
α ∈ h−1 (s(α)) | α ∈ O(P)

}
denote the conditioners of k.

Choose a minimal element q ∈ P \ λ and let µ =↓ q ∈ O(P). The goal is to extend k

to a partial lift k : O((λ ∪ µ)>)→ K that is conditional.
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Applying the Booleanization functor, we obtain B(k) : B(O(λ>)) → B(K). By
Proposition 2.3 we have

k(α) =

{∨
p∈α B(k)({p}) for all α ∈ O(λ>), α 6= P

1 for α = P.

We want to extend to a map on O((λ ∪ µ)>) by determining a proper image
for {q} in B(K). Since h is spacious, Definition 5.8(ii) implies that there exists{
v1
α ∈ h−1(s(α)) | α ∈ O(P)

}
such that v1

µ ∧ v1
α ≤ k(λ) whenever q /∈ α. Define

vα = v0
α ∧ v1

α for all α ∈ O(P).

Now define

Bq = vµ ∧ k(λ)c ∈ B(K).

Finally define

k(α) =


∨
p∈α B(k)({p}) for all α ∈ O((λ ∪ µ)>) with q /∈ α, α 6= P

Bq ∨
∨
p∈α,p 6=q B(k)({p}) for all α ∈ O((λ ∪ µ)>) with q ∈ α, α 6= P

1 for α = P.

This is a well-defined mapping that extends the domain of k : O(λ>) → B(K) to
O((λ ∪ µ)>). The proof is complete once it is shown that k is a conditional partial
lift of s on O((λ ∪ µ)>). There are three properties of k that need to be shown: (a)
k is a lattice homomorphism, (b) k maps into K with h ◦ k = s, and (c) {vα} are
conditioners for k.

Proof of (a): For notational convenience, let Bp = B(k)({p}) for p ∈ λ so that

k(α) =
∨
p∈α

Bp for all α ∈ O((λ ∪ µ)>). (21)

Since vµ ∧ vα ≤ kλ is equivalent to vµ ∧ k(λ)c ∧ vα = 0, we have Bq ∧ vα = 0 for all
α 63 q by definition of Bq . Therefore

Bp ∧ vα = 0 for all p ∈ (λ ∪ µ) \ α. (22)

Since Bq ∧ k(λ) = 0, it follows from equation (4) in Proposition 2.3 that

Bp ∧Bp′ = 0 for all distinct elements p, p′ ∈ λ ∪ µ. (23)

From (21) we have that

k(α) ∨ k(α′) =
(∨
p∈α

Bp

)
∨
( ∨
p′∈α′

Bp′
)

=
( ∨
p∈α∪α′

Bp

)
= k(α ∪ α′).
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Moreover from (23)

k(α) ∧ k(α′) =
(∨
p∈α

Bp

)
∧
( ∨
p′∈α′

Bp′
)

=
∨

(p,p′)∈α×α′
(Bp ∧Bp′) =

∨
p∈α∩α′

Bp = k(α ∩ α′),

which proves that k : O((λ ∪ µ)>)→ B(K) is a lattice homomorphism.

Proof of (b): Setting α = µ in Equation (22), Bp ∧ vµ = 0 for all p ∈ λ \ µ. Since
µ =↓ q, it has an immediate predecessor ←−µ = µ \ {q}, and since q 6∈ λ, we have
λ ∧ µc = λ ∧ (←−µ )c.

Now
k(λ) ∧ k(←−µ )c = k(λ ∧ (←−µ )c) =

∨
p∈λ∩←−µ c

Bp =
∨

p∈λ∩µc
Bp.

Therefore k(λ) ∧ k(←−µ )c ∧ vµ = 0 so that k(←−µ ) ∨ (k(λ) ∧ vµ) = k(←−µ ). Hence

k(µ) = k(←−µ ) ∨Bq = k(←−µ ) ∨ (vµ ∧ k(λ)c)

= k(←−µ ) ∨ (vµ ∧ k(λ)) ∨ (vµ ∧ k(λ)c)

= k(←−µ ) ∨ vµ.

Note that←−µ ∈ O(λ>) since q is a minimal element in P\λ. This implies that k(µ) ∈ K

because both k(←−µ ) and vµ are in K. Finally h(k(µ)) = h(k(←−µ )) ∨ h(vµ) = s(←−µ ) ∨
s(µ) = s(µ).

Since µ =↓q, the elements α ∈ O((λ∪µ)>) satisfy either α∩µ = 0, which implies
α ⊂ λ, or α = α′ ∪ µ for some α′ ⊂ λ. In the former case, we already have k(α) ∈ K

and h(k(α)) = s(α), since k is a partial lift on O(λ>). Now consider α = α′ ∪ µ
with α′ ⊂ λ. Since k is a homomorphism, k(α) = k(α′) ∨ k(µ) so that k(α) ∈ K

and h(k(α)) = h(k(α′)) ∨ h(k(µ)) = s(α′) ∨ s(µ) = s(α). We have now established
h ◦ k = s on O((λ ∪ µ)>). There for k : O((λ ∪ µ)>)→ K is a partial lift of s.

Now that we have established that k on O((λ ∪ µ)>) is an extension of the
original lattice homomorphism on O(λ>), and that both domains are sublattices
of O(P), then the functoriality of the Booleanization B guarantees that B(k)({p}) has
not changed for p ∈ λ and B(k)({q}) = Bq , which all lie in B(K).

Proof of (c): This partial lift is conditional with respect to {vα} by Equation (22) using
the equivalence in (19). We have now shown that any conditional lift on O(λ>) can
be extended to a conditional lift on O((λ ∪ µ)>), where µ =↓ q for some minimal
element q of P \ λ.

We construct consecutive conditional lifts by depleting the set P as described in
the above induction step. This procedure terminates after finitely many steps. To
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complete the proof we need to show that k(1) = 1 complies with the terminal step.
Indeed at the terminal step λ ∪ µ = P, and hence

h(k(1)) = h(k(λ)) ∨ h(k(µ)) = s(λ) ∨ s(µ) = s(λ ∪ µ) = s(1) = 1,

and therefore k(1) = 1 since h−1(1) = 1.

Note that if the hypothesis h−1(1) = 1 is omitted, then the above proof provides
a lift mapping that satisfies all properties of a lattice homomorphism except possibly
k(1) = 1.
Proof of Theorem 1.2. The proof is done in two steps. We begin by verifying (ii). Let R
be a finite sublattice of Rep(ϕ). As is indicated in the discussion preceding (15), it is
sufficient to lift sR : O(P)→ Rep(ϕ) where sR = i◦(↓∨)−1 and i is the inclusion map.
By Proposition 5.12, Inv+ is spacious. Also, since X is a repeller, (Inv+)−1(X) = X ,
see Remark 4.5. Hence by Theorem 5.13, the desired lift kR : O(P) → RNbhd(ϕ)

exists.
As in the proof of (ii), we begin the proof of (i) by considering a finite sublattice

A of Att(ϕ), and we note that it is sufficient to lift sA : O(P) → Att(ϕ) where sA =

i ◦ (↓∨)−1 and i is the inclusion map. The remainder of the proof is based on the
following diagram that we demonstrate is commutative.

ANbhd(ϕ)

O(P) Att(ϕ)

O(P∂) Rep(ϕ)

RNbhd(X)

����

Inv

OO

��

c

77

77

kA

// //
sA

OO

��

∗

// //
sR

''

''

kR

____

Inv+

��

OO

c (24)

The complement map c : O(P)→ O(P∂) is given by (3). The vertical double headed
arrows are involutions. The right square is given by (1) and hence is commutative.
Define sR : O(P∂)→ Rep(ϕ) by

∗ ◦ sA ◦ c
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so that the left square commutes. By Theorem 1.2(ii), there exists kR such that the
lower triangle commutes. Define

kA := c ◦ kR ◦ c.

The commutativity of the diagram guarantees that Inv ◦kA = sA and hence that kA
is a lift of sA.
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Appendix A. Alpha and Omega limit sets

In this appendix we provide detailed proofs of the Propositions 2.11 and 2.13
on alpha-limit and omega-limit sets. Most of the proofs are consequences of the
following properties of a continuous function f : X → X and subsets U ⊂ X

U ⊂ f−1(f(U)), f(∩αUα) ⊂ ∩αf(Uα), and f(cl (U)) ⊂ cl (f(U)).

Proof of Proposition 2.11. (i) For t ≥ 0 the set cl
(
ϕ([t,∞), U))

)
is compact, and thus

ω(U) =
⋂
t≥0 cl

(
ϕ([t,∞), U))

)
is compact. As for the invariance we argue as fol-

lows. We first show that ω(U) is forward invariant, which holds without any com-
pactness assumptions. Let t ≥ 0. Then

ϕ(t, ω(U)) = ϕ
(
t,
⋂
s≥0

cl
(
ϕ([s,∞), U)

))
⊂

⋂
s≥0

ϕ
(
t, cl

(
ϕ([s,∞), U)

))
⊂
⋂
s≥0

cl
(
ϕ
(
t,
(
ϕ([s,∞), U)

)))
=

⋂
s≥0

cl
(
ϕ
(
s,
(
ϕ([t,∞), U)

)))
⊂
⋂
s≥0

cl
(
ϕ
(
s,
(
ϕ([0,∞), U)

)))
=

⋂
s≥0

cl
(
ϕ
(
[s,∞), U

))
= ω(U),

which establishes the forward invariance of ω(U). Fix t > 0. By the definition of
omega-limit set, for each y ∈ ω(U) there exists a sequence {(xn, tn)}with tn > t and
tn → ∞ such that ϕ(tn, xn) → y as n → ∞. Then the sequence {ϕ(tn − t, xn)} has
a subsequence converging to some z ∈ ω(U). By continuity and the group property
ϕ(t, z) = y. Since t > 0 and y ∈ ω(U) were arbitrary, ω(U) ⊂ ϕ(t, ω(U)) for all t > 0.
Combining this with the forward invariance of ω(U) proves that ω(U) is invariant.

(ii) Suppose U 6= ∅, then the expression for the omega limit set an intersection of
nested nonempty compact sets, which is nonempty.

(iii) From the assumptions we derive that

ω(U) =
⋂
t≥0

cl
(
ϕ
(
[t,∞), U

))
⊂
⋂
t≥τ

cl
(
ϕ
(
[t,∞), U

))
⊂ cl (U).

By (i), ω(U) is compact and invariant, and therefore ω(U) ⊂ Inv(cl (U)). Let S ⊂
cl (U) be an invariant set, then

S =
⋂
t≥0

ϕ(t, S) ⊂
⋂
t≥0

cl
(
ϕ(t, S)

)
=
⋂
t≥0

cl
(
ϕ([t,∞), S)

)
= ω(S) ⊂ ω(cl (U))

=
⋂
t≥0

cl
(
ϕ([t,∞), cl (U))

)
⊂
⋂
t≥0

cl
(
ϕ([t,∞), U)

)
= ω(U),
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which yields S ⊂ ω(U) ⊂ cl (U), and thus ω(U) = Inv(cl (U)). Here we used that

ϕ([t,∞), cl (U)) =
⋃
τ≥t

ϕ(τ, cl (U)) ⊂
⋃
τ≥t

cl
(
ϕ(τ, U)

)
⊂ cl

(⋃
τ≥t

ϕ(τ, U)
)

= cl
(
ϕ([t,∞), U)

)
. (25)

(iv) The order-preserving property follows immediately from the definition of
omega-limit set.

(v) In order to show the first property we argue as follows. Since U ⊂ U ∪ V and
V ⊂ U ∪ V , it follows that ω(U) ∪ ω(V ) ⊂ ω(U ∪ V ). Moreover, if y ∈ ω(U ∪ V ),
then there exists sequences xn ∈ U ∪V and tn →∞ such that limn→∞ ϕ(tn, xn) = y.
One can choose a subsequence {xnk} which is contained in either U or V . Hence
y ∈ ω(U)∪ω(V ), and thus ω(U ∪V ) ⊂ ω(U)∪ω(V ). As for the intersection we argue
as follows. Note that U ∩ V ⊂ U and U ∩ V ⊂ V . By (iv) we have ω(U ∩ V ) ⊂ ω(U)

and ω(U ∩ V ) ⊂ ω(V ), which gives ω(U ∩ V ) ⊂ ω(U) ∩ ω(V ).

(vi) It follows from Equation (25) that ω(cl (U)) ⊂ ω(U). From (v) we have U ⊂
cl (U), which implies ω(U) ⊂ ω(cl (U)), and proves equality.

(vii) If there exists a backward orbit γ−x ⊂ U , then for any sequence tn → ∞ the
sequence yn = γ−x (−tn) ∈ U has the property that x = ϕ(tn, yn), which shows that
x ∈ ω(U).

(viii) Since ϕ([t,∞), U) = U , we have ω(U) =
⋂
t≥0 cl (U) = cl (U).

Proof of Proposition 2.13. (i) For t ≤ 0 the set cl
(
ϕ((−∞, t], U))

)
is compact, and hence

α(U) is compact. For t ≥ 0,

ϕ(t, α(U)) = ϕ
(
t,
⋂
s≤0

cl
(
ϕ((−∞, s], U)

))
⊂

⋂
s≤0

ϕ
(
t, cl

(
ϕ((−∞, s], U)

))
⊂
⋂
s≤0

cl
(
ϕ
(
t,
(
ϕ((−∞, s], U)

)))
⊂

⋂
s≤0

cl
(
ϕ((−∞, t+ s], U)

)
⊂
⋂
s≤−t

cl
(
ϕ((−∞, t+ s], U)

)
=

⋂
σ≤0

cl
(
ϕ((−∞, σ], U)

)
= α(U),
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which proves the forward invariance of α(U). Here we used the fact that

ϕ(t, ϕ((−∞, s], U)) = ϕ
(
t,
⋃
σ≤s

ϕ(σ, U)
)

=
⋃
σ≤s

ϕ(t, ϕ(σ, U))

⊂
⋃
σ≤s

ϕ(t+ σ, U) = ϕ((−∞, t+ s], U). (26)

(ii) If U 6= ∅ and ϕ is surjective, then cl
(
ϕ((−∞, s], U)

)
is compact and nonempty

for all s ≤ 0. Therefore α(U) is nonempty.

(iii) If U ∈ Invset−(X), then ϕ(t1, U) ⊂ ϕ(t2, U) for tt < t2 < 0. Indeed, ϕ(t1, U) =

ϕ(t2, ϕ(t1 − t2, U)) ⊂ ϕ(t2, U). This implies that ϕ((−∞, t], U) ⊂ ϕ(t, U) for all
t ≤ 0. Therefore, α(U) =

⋂
t≤0 cl (ϕ((−∞, t], U)) ⊂

⋂
t≤0 cl (ϕ(t, U)) ⊂

⋂
t≤0 cl (U) =

cl (U). In particular cl (U) ∈ Invset−(X) implies α(cl (U)) ⊂ cl (U). By Property (i)
we have α(cl (U)) ∈ Invset+(X) from which it follows that α(cl (U)) ⊂ Inv+(cl (U)).
Let S ⊂ Inv+(cl (U)) be forward invariant, then ϕ(t, S) ⊂ S for all t ≥ 0. This
implies S ⊂ ϕ(−t, ϕ(t, S)) ⊂ ϕ(−t, S) ⊂ cl (ϕ((−∞,−t], S)) for all t ≥ 0, and thus

S ⊂
⋂
t≥0

cl
(
ϕ((−∞,−t], S)

)
= α(S) ⊂ α(cl (U)),

where the latter inclusion follows from the fact that S ⊂ cl (U) by Property (iv), the
proof of which follows directly from the definition. We now conclude that α(cl (U))

is the maximal forward invariant set in cl (U).

(iv) The order-preserving property follows directly from the definition of alpha-
limit set.

(v) The proof of the behavior of alpha-limit sets with respect to intersection and
union is the same as the in the proof of Proposition 2.11 for omega-limit sets using
negative times tn → −∞.

(vi) Suppose γ+
x ⊂ U . Then for any sequence tn →∞ the sequence yn = γ+

x (tn) ∈ U
has the property that x ∈ ϕ(−tn, yn), which shows that x ∈ α(U). Consequently
Inv+(U) ⊂ α(U). If α(U) ⊂ U , then α(U) is a forward invariant set contained in U
by Property (i), and thus α(U) ⊂ Inv+(U).

(vii) By Properties (i) and (iii), α(U) is compact, forward invariant, and contained
in cl (U) = U . Property (vi) implies that α(U) = Inv+(U). Using Lemma 2.10 we
conclude that α(U) is backward invariant. Consequently, α(U) ∈ Invset±(X). If ϕ
is surjective then forward-backward invariance is equivalent to strong invariance,
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which implies that α(U) ⊂ Inv(U). Moreover, Inv(U) ⊂ Inv+(U) = α(U), which
shows that α(U) is the maximal invariant set in U .

(viii) From forward invariance ϕ(t, U) ⊂ U for all t ≥ 0, and therefore U ⊂
ϕ
(
−t, ϕ(t, U)

)
⊂ ϕ(−t, U), which implies

cl (U) ⊂ cl
(
ϕ(−t, U)

)
⊂ cl

(
ϕ((−∞,−t], U)

)
,

and hence cl (U) ⊂ α(U). If U ∈ Invset±(X), then it follows from Property (iii) that
α(U) = cl (U).

Proof of Proposition 2.15. For omega-limits sets, this follows from Proposition 2.11.
Let τ > 0 and y ∈ αo(γ−x ). There exists tn → ∞ such that γx(−tn) → y as n →

∞. By continuity of ϕ, we have, for τ ≥ 0, ϕ(τ, y) = limn→∞ γx(−tn + τ) ∈ αo(γ−x )

so that ϕ(τ, αo(γ−x )) ⊂ αo(γ−x ). Moreover, since ϕ(τ, γ−x (−tn − τ)) = γ−x (−tn) → y

and γ−x (−tn − τ) → z ∈ αo(γ−x ), perhaps after extracting a subsequence, we have
y = ϕ(τ, z) so that αo(γ−x ) ⊂ ϕ(τ, αo(γ−x )). Therefore αo(γ−x ) is invariant. As the
intersection of nested, nonempty, compact sets, αo(γ−x ) is nonempty and compact.

If x ∈ U and γ−x is a backward orbit, then cl (γ−x ((−∞, t])) ⊂ cl (ϕ((−∞, t], U))

for all t < 0, and hence αo(γ−x ) ⊂ α(U).

Proof of Proposition 2.16. We start with proving that S⊕ is forward-backward invari-
ant. Consider the forward orbit γ+

x through x ∈ S⊕. Let y = γ+
x (t) for some t ≥ 0.

By definition of omega limit set ω(y) = ω(x), and thus ω(y) ∩ S = ∅. This shows
that γ+

x ⊂ S⊕, which proves that S⊕ is forward invariant. For any t ≤ 0 for which
ϕ(t, x) 6= ∅, we choose y ∈ ϕ(t, x). As before ω(y) = ω(x) and thus y ∈ S⊕. This
shows that Γ−(S⊕) ⊂ S⊕, which establishes the backward invariance of S⊕.

We now show that S	 is invariant. Let x ∈ S	. Then there exists an orbit γx
such that αo(γ−x ) ∩ S = ∅. Therefore, for every s ∈ T the orbit γy(t) = γx(s + t)

through the point y = γx(s) is a translate of the orbit γx. This implies that αo(γ−y ) ∩
S = ∅. Therefore, γx ⊂ S	, which establishes the invariance of S	.

If S is compact and invariant, then by Proposition 2.11(viii) we have ω(x) ⊂
ω(S) = cl (S) = S for all x ∈ S, and therefore ω(x) ∩ S 6= ∅. This shows that
S ∩ S⊕ = ∅. Similarly, if S is compact and forward-backward invariant, then by
Propositions 2.13(viii) and 2.15 we have αo(γ−x ) ⊂ α(S) = cl (S) = S for all back-
ward orbits γ−x , and thus S ∩ S	 = ∅.

Appendix B. Properties of Attractors

Proof of Proposition 3.1. Let U be a trapping region for A. If A′ = Inv(cl (U)), then
there exists τ > 0 such that A′ = ϕ(τ,A′) ⊂ ϕ(τ, cl (U)) ⊂ int (U) ⊂ U , and thus
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A′ ⊂ Inv(U) = A. On the other hand A = Inv(U) ⊂ Inv(cl (U)) = A′, which proves
that A = A′ = Inv(cl (U)) and A ⊂ int (U).

Since U ∈ Invset+(ϕ), Proposition 2.11(iii) implies, ω(U) = Inv
(
cl (U)

)
= A. The

latter also implies that if U 6= ∅, then A 6= ∅ (Proposition 2.11(i)).

It is often useful to be able to identify a neighborhood containing an attractor
without having to find a forward invariant neighborhood as required for a trapping
region. Indeed, there is a weaker notion that can be used. A neighborhood U ⊂ X

is an attracting neighborhood if

ω(U) ⊂ int (U). (27)

The set of attracting neighborhoods in X is denoted by ANbhd(ϕ).

Proof of Lemma 3.2. Suppose (27) holds, then, since cl
(
ϕ([t,∞), U)

)
is a nested family

of nonempty, compact sets, and the infinite intersection ω(U) is contained in the
open set int (U), there exists a τ > 0 such that cl

(
ϕ([t,∞), U)

)
⊂ int (U), for all

t ≥ τ , and in particular cl
(
ϕ(t, U)

)
⊂ int (U) for all t ≥ τ . Now,

ϕ(t, cl (U)) ⊂ cl
(
ϕ(t, U)

)
⊂ int (U) ⊂ U,

for all t ≥ τ .
Now, if U ⊂ X is a neighborhood such that there exists τ > 0 such that

ϕ(t, cl (U)) ⊂ int (U) for all t ≥ τ , then ϕ(t, U) ⊂ U for all t ≥ τ . By Proposi-
tion 2.11(iii), we then have that ω(U) = Inv(cl (U)) ⊂ cl (U), and therefore, by the
assumptions and the invariance of ω(U),

ω(U) = ϕ(τ, ω(U)) ⊂ ϕ(τ, cl (U)) ⊂ int (U),

which proves that U is an attracting neighborhood.
Since cl (cl (U)) = cl (U), we have ϕ(t, cl (U)) ⊂ int (U) ⊂ int (cl (U)) for all

t ≥ τ . For int (U) we have ϕ
(
t, cl (int (U))

)
⊂ ϕ(t, cl (U)) ⊂ int (U) = int (int (U))

for all t ≥ τ .

Proof of Lemma 3.3. If U ⊂ X is a forward invariant attracting neighborhood, then
ϕ(t, U) ⊂ U for all t ≥ 0, and ϕ(t, cl (U)) ⊂ int (U) for all t ≥ τ > 0 by Lemma 3.2.
This implies that U is a trapping region.

If U is a trapping region, then U is forward invariant, and there exists a τ > 0

such that ϕ(τ, cl (U)) ⊂ int (U). By the group property

ϕ(t+ τ, cl (U)) = ϕ
(
τ, ϕ(t, cl (U))

)
⊂ ϕ

(
τ, cl (ϕ(t, U))

)
⊂ ϕ(τ, cl (U)) ⊂ int (U) ∀ t ≥ 0,

which proves that U is an attracting neighborhood by Lemma 3.2.
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Proof of Lemma 3.4. It follows from Proposition 2.11(iv) and (vi) that A = ω(A) ⊂
ω(U ′) ⊂ ω(cl (U)) = ω(U) = A. Hence that ω(U ′) = A ⊂ int (U ′), which proves that
U ′ is an attracting neighborhood for A.

Proof of Proposition 3.5. IfA is an attractor, then any trapping region U is an attracting
neighborhood. Now suppose U is an attracting neighborhood, then also N = cl (U)

is an attracting neighborhood by Lemma 3.2. Since A is compact, there exists ε0 > 0

such that cl (Bε(A)) ⊂ int (U) for all 0 < ε < ε0. Lemma 3.4 implies that cl (Bε(A))

is an attracting neighborhood for A. By Lemma 3.2, there exists τε > 0 such that
ϕ(t, cl (Bε(A))) ⊂ Bε(A) for all t ≥ τε. Define N ′ε = ϕ([0, τε], cl (Bε(A))). By defi-
nition N ′ε is a forward invariant, compact neighborhood of A, but N ′ε may not be a
subset of U .

If ε is chosen small enough, then N ′ε ⊂ U . Suppose not and choose εn → 0 such
that N ′εn 6⊂ U . Then there exists xn ∈ cl (Bεn(A)) and tn ≤ τεn such that xn → x ∈ A
and ϕ(tn, xn) /∈ U with ϕ(tn, xn) → z /∈ int (U), since X \ int (U) is closed. Passing
to a subsequence, either tn → τ < ∞ or tn → ∞. In the former case ϕ(τ, x) = z,
which contradicts the invariance of A. In the latter case z ∈ ω(U) ⊂ int (U), a
contradiction, and thus A ⊂ N ′ε ⊂ U for ε sufficiently small. By Lemma 3.4, N ′ε is
a forward invariant attracting neighborhood for A, and thus a trapping region by
Lemma 3.3.

Proof of Corollary 3.6. If U is an attracting neighborhood, then A = ω(U) ⊂ int (U)

is an attractor, which is compact and invariant. To show that A is the maximal
invariant set in U , suppose that S is an invariant set in U satisfying A ⊂ S ⊂ U .
Then,

A = cl (A) = ω(A) ⊂ ω(S) ⊂ ω(U) = A,

and consequently S ⊂ cl (S) = ω(S) = A and thus A = S. This proves that A =

Inv(U). Since, ω(U) = ω(cl (U)), the same reasoning implies that A = Inv(cl (U)).
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