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ABSTRACT. The discrete dynamics generated by a continuous map can be represented combina-
torially by an appropriate multivalued map on a discretization of the phase space such as a cubical
grid or triangulation. In this paper we provide explicit algorithms and computational complexity
bounds for computing dynamical structures for the resulting combinatorial multivalued maps.
Specifically we focus on the computation attractor-repeller pairs and Lyapunov functions for
Morse decompositions. These discrete Lyapunov functions are weak Lyapunov functions and
well-approximate a continuous Lyapunov function for the underlying map.
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1. Introduction

Identifying recurrent behavior is of fundamental importance in dynamical systems theory,
and several characterizations of recurrence have proved useful, e.g. periodicity, nonwandering
points, and chain recurrence. In graph theory, the notion of recurrence corresponds to period-
icity, the existence of a nontrivial path from a vertex back to itself, and the vertices of a finite
directed graph can be separated into recurrent and nonrecurrent components by a linear-time
computation. These observations lead naturally to the question of whether dynamical systems
can be faithfully represented combinatorially by a finite directed graph, which can then be used
for efficient computation.

Conley’s Decomposition Theorem asserts that every dynamical system can be separated into
a minimal (chain) recurrent set and its complement on which the dynamics is gradient-like,
i.e. there exists a Lyapunov function which is strictly decreasing along orbits. The chain re-
current set can then be divided into components which are partially-ordered by the existence of
connecting orbits between them. In general, this does not lead to a finite directed graph because
the number of recurrent components can be infinite. However, by grouping together recurrent
components and connections, one can produce finite partially-ordered collections of invariant
sets called Morse decompositions, which do provide representations of the dynamics by finite
directed graphs.

The standard theoretical framework for Conley’s Decomposition Theorem does not lead nat-
urally to a computational method for approximating the chain recurrent set, constructing Morse
decompositions, or approximating Lyapunov functions. In [1], an alternative approach based on
finite spatial discretizations and combinatorial multivalued maps is developed. As we outline
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briefly below, the main features of this approach are (1) the basic notions of recurrent set, at-
tractor, Morse decomposition, Lyapunov function, etc. are meaningful in combinatorial systems,
(2) there is convergence of these dynamical structures on the combinatorial level to correspond-
ing structures in the underlying dynamical system, and (3) the tools of the Conley index theory
can be applied to a combinatorial approximation to provide rigorous computer-assisted proofs of
qualitative dynamics, see [2, 3, 4, 5].

1.1. Combinatorial multivalued maps and dynamics. The development of a computa-
tional framework for the construction of a combinatorial representation of a dynamical system
requires a finite description of both the metric space X and the dynamical system ϕ. To intro-
duce these ideas of combinatorialization and dynamics, we consider a discrete dynamical system
generated by a surjective map f : X → X. The more general cases of continuous time and
noninvariant domains require a few more technicalities and are considered via examples in later
sections. We begin with a general form of discretization of the phase space.

DEFINITION 1.1 ([6]). A grid on X is a finite collection G of nonempty compact subsets of
X with the following properties:

(i) X = ∪G∈GG,
(ii) G = cl(int(G)) for all G ∈ G,

(iii) G ∩ int(H) = ∅ for all G 6= H ∈ G.

The diameter of a grid is defined by diam(G) := sup{diam(G) | G ∈ G}. The realization
map | · | is a mapping from subsets of G to subsets of X , and is defined for S ⊂ G by |S| :=
∪S∈SS ⊂ X . The existence of grids of arbitrarily small size easily follows from compactness.
In practice, X ⊂ Rn and G is a cubical grid, triangulation, or polygonal tiling, but the theory
requires no extra work for arbitrary grids.

We now construct a multivalued map F : G −→→G which maps grid elements to sets of grid
elements and is a combinatorial representation of the action of f on X. Of primary importance
is the ability to go backward from the combinatorial information contained in F to information
about the topological dynamics of f. As described in [1], the essential requirement is that images
of the multivalued map F well-cover images of f, as first recognized by Szymczak [3].

DEFINITION 1.2 ([3]). A multivalued map F : G −→→G is an outer approximation of f :
X → X if f(G) ⊂ int(|F(G)|) for every G ∈ G.

The smallest such outer approximation is given as follows.

DEFINITION 1.3. The minimal multivalued map F : G −→→G associated to f on the grid G
is defined by F(G) := {H ∈ G | H ∩ f(G) 6= ∅}.

The minimal multivalued map is a natural setting in which to design algorithms to approxi-
mate the discrete dynamics of a continuous map. However, determining the minimal multivalued
map F requires complete knowledge of the image of f on grid elements, which is computation-
ally impractical. Often one needs to enlarge the images of F , for example to take into account
truncation error and numerical error.

PROPOSITION 1.4 ([1]). If F : G −→→G encloses the minimal multivalued map associated to
f , then F is an outer approximation of f .

General computer software has been developed to compute such multivalued maps, cf. GAIO
[7, 8]. If errors are incorporated into the construction of an outer approximation, then rigorous
information about the dynamics of f can be obtained using the Conley index, see [2, 3, 4, 5].

Note that the combinatorial system (G,F) is simply a different way of describing a directed
graph whose vertices are elements of G with an edge from G to H if H ∈ F(G). For example,
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consider the logistic map f(x) = 2.5x(1− x). Figure 1 shows the directed graph corresponding
to the minimal multivalued map for the grid obtained by dividing the domain X = [0, 5/8] into
five equal-length subintervals.
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FIGURE 1. Directed graph representation of the minimal multivalued map for
the logistic map f(x) = 2.5x(1 − x). The pair ({G5}, {G1}) is an attractor-
repeller pair for F .

We now adapt some dynamical notions to this combinatorial setting, taking into account the
fact that F is multivalued. We present here only the material necessary for the results of this
paper; for a more complete, detailed description the reader is referred to [1]. Note that since f
is surjective on X and F is an outer approximation, the multivalued map has the property that
F(G) and F−1(G) are nonempty for all G ∈ G. We call such a multivalued map closed.

DEFINITION 1.5. S ⊂ G is an invariant set for F if S ⊂ F(S) and S ⊂ F−1(S).

If S and S ′ are invariant sets under F , then S ∪ S ′ is also an invariant set under F . The
maximal invariant set in U ⊂ G is denoted by Inv(U). For k ≤ l let Γk,l(U) :=

⋃
k≤n≤l Fn(U).

We write Γk
+(U) = Γk,∞(U) as the k-forward image of U , and similarly Γk

−(U) = Γ−∞,k as the
k-backward image of U .

DEFINITION 1.6. Let F : G −→→G be closed. A subset A ⊂ G is an attractor for F if
F(A) = A. The dual repeller A∗ of an attractor A is the maximal attractor for F−1 in the
subgraph G\A.

Figure 1 shows an example of a combinatorial attractor-repeller pair. Refining the notion of
an attractor-repeller pair leads to the following definition.

DEFINITION 1.7. Let F : G −→→G be closed. A Morse decomposition of G is a finite collec-
tion of invariant sets S1, · · · ,Sn for which there exists a strict partial ordering� on the index set
{1, · · · , n} that satisfies the following property. Given a complete orbit {Gk}k∈Z for which there
exist unique 1 ≤ i, j ≤ n and there exist k± ∈ Z such that Gk ∈ Si for all k < k− and Gk ∈
Sj for all k > k+ and if i 6= j, then i � j. The sets Si are called Morse sets.

DEFINITION 1.8. Let F : G → G be closed. The recurrent set of F is defined by R(F) =
{G ∈ G | G ∈ Fn(G) for some n > 0}. The recurrent components are the equivalence classes
of R(F) defined by the relation G ∼ H if there exist n, m > 0 such that H ∈ Fm(G) and
G ∈ Fn(H).

Observe that components ofR(F) are the Morse sets of the finest Morse decomposition. In
graph-theoretic terms, the recurrent components correspond precisely to the nontrivial strongly-
connected components or cycles of F which contain at least one edge.
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PROPOSITION 1.9 ([1]). Let F : G −→→G be closed. Let the set of all attractor-repeller pairs
in F be given by

{
(Aj ,A∗j ) | j = 1, . . . , J

}
. Then,R(F) =

⋂J
j=1

(
Aj ∪ A∗j

)
For any Morse decomposition, including the finest Morse decomposition given by the recur-

rent components, the multivalued map F has a gradient-like structure off of the Morse sets Si.
To make this precise we introduce the notion of a Lyapunov function on a directed graph.

DEFINITION 1.10. A Lyapunov function for a Morse decomposition {Si | i = 1, . . . , I} of
F : G −→→G is a function L : G → [0, 1] satisfying:

(a) if G, H ∈ Si, then L(G) = L(H),
(b) if H ∈ F(G), then L(G) ≥ L(H),
(c) if H ∈ F(G) and G and H do not belong to the same Morse set, then L(G) > L(H).

Since G is a finite set and we are considering Lyapunov functions with images in R, we can
choose L : G → [0, 1] with the following properties.

PROPOSITION 1.11 ([1]). There exists a Lyapunov function L : G → [0, 1] such that for any
c ∈ R, L−1(c) is either a Morse set Si, an element of G \ ∪iSi, or empty.

Discrete Lyapunov functions for Morse decompositions ofF can easily be constructed using
linear-time graph algorithms, see [9]. One can also think of a discrete Lyapunov function as a
piecewise-constant function defined on X which is constant on grid elements. However, these
functions need not be weak Lyapunov functions or approximate continuous Lyapunov functions
for the underlying map f since they do not take into account any topological information. A
weak Lyapunov function for f on X satisfies L(x) ≥ L(f(x)) for all x ∈ X.

1.2. Outline. In the previous section, we build and identify structures in a multivalued
map or directed graph which parallel the dynamical notions surrounding the idea of recurrence,
namely attractor-repeller pairs, Morse decompositions, Lyapunov functions, and the recurrent
set. In [1], it is shown that information from these combinatorial structures can often be pulled
back to provide rigorous information about the dynamics of the underlying system using the Con-
ley index theory, see also [2, 3, 4, 5]. Moreover, it is shown that these structures in a sequence
of grids Gn with diam(Gn) → 0 converge to the corresponding structures in the underlying
dynamical system.

In this work, we focus on issues of computation. In particular we provide algorithms for
finding all attractor-repeller pairs in a multivalued map or directed graph and for constructing
Lyapunov functions which approximate continuous Lyapunov functions for the underlying dy-
namics. In Section 2 we develop an algorithm for finding all combinatorial attractor-repeller
pairs and a bound on its complexity. In Section 3 we explain how to compute discrete Lyapunov
functions which are related to the underlying dynamics and give an overall complexity bound
in Theorem 3.10. To provide an efficient method for computing such Lyapunov functions, we
design an algorithm different from that given in [1]. Some examples from both maps and flows
can be found in Section 4.

There are open problems for future work. For example, to compute a nice Lyapunov function
for the recurrent set, it is not necessary to use all attractor-repeller pairs in general; one can iden-
tify certain irreducible attractors on which to compute Lyapunov functions, which may reduce
the overall cost, cf. [10]. Also, in certain situations it may be possible to approximate smooth
Lyapunov functions, which may be useful in some applications.

Finally, in certain places the algorithms require a search of a given list. The complexity of
this search depends on the data structures used to implement the algorithm. When presenting the
computational complexity of an algorithm, we will use the notation l(n) to denote the complexity
to search a list of n elements.
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2. Computation of attractor-repeller pairs

In this section, we introduce an algorithm for finding all attractor-repeller pairs in a directed
graph and provide an estimate of the computational complexity.

2.1. Preliminaries. First we establish some important properties for attractor-repeller pairs
in a closed direct graph.

LEMMA 2.1. Let B ⊂ G satisfy F(B) ⊃ B. Then Γ+(B) is an attractor containing B.

Proof: F (Γ+(B)) =
⋃

n≥1Fn(B) =
⋃

n≥0Fn(B) = Γ+(B) since F0(B) = B and F1(B) =
F(B) ⊃ B. So by definition Γ+(B) is an attractor and contains B.

LEMMA 2.2. Every attractor contains at least one recurrent component, and if R ∩A 6= ∅
for some recurrent componentR and attractor A, thenR ⊂ A.

Proof: LetA be an attractor. Then F(A) = A so thatA is invariant set, and hence for all G ∈ A
there exists a complete orbit γG = {Gk}k∈Z in A. Since F is closed and finite, there exists H
such that Gkn = H for some subsequence. Then H is recurrent andR(H) ⊂ A whereR(H) is
the recurrent component containing H. Indeed it follows that for every complete orbit Gk there
exists k∗ ≥ 0 and a recurrent component R such that Gk ∈ R for all k ≥ k∗, and a similar
result holds for backward orbits. To prove the second statement, if H ∈ R∩A and G ∈ R, then
G ∈ Fn(H) for some n > 0. Thus G ∈ A since F(A) = A.

THEOREM 2.3. Let PR be the set of all possible unions of recurrent components. If S ∈ PR,
then Γ+(S) is an attractor containing S. Moreover, for every attractorA we haveA = Γ+(SA)
where SA = R(F) ∩ A ∈ PR, and its dual repeller A∗ = Γ+(R(F) ∩ A∗).

PROOF. Let R be a recurrent component, then R is invariant so that R ⊂ F(R). Clearly
this property holds for a union S ∈ PR as well, and thus Γ+(S) is an attractor containing S by
Lemma 2.1.

Now let A be an attractor. Then SA 6= ∅ by Lemma 2.2. Let A′ = Γ+(SA). We now show
thatA = A′. Since F(A) = A, the images Fn(SA) ⊂ A for all n ≥ 0 so thatA′ ⊂ A. Suppose
G ∈ A′ \ A. Since F(A) = A and F(A′) = F(A′), there is a backward orbit {Gk}0k=−∞ ⊂
A \ A′. Using the same argument as in the proof of Lemma 2.2, there exists k∗ ≤ 0 and a
recurrent component R such that Gk ∈ R for all k ≤ k∗. Hence R ⊂ A \ A′ by Lemma 2.2,
which is a contradiction. The analogous result for the dual repeller follows from the fact that A∗
is an attractor for F−1.

COROLLARY 2.4. Let R1, · · ·Rs be recurrent components. Let Ai = Γ+(Ri) be their
corresponding attractors with S = ∪iRi. Then Γ+(S) = A = ∪iAi.

To summarize, all attractor-repeller pairs can be found by first computing the recurrent com-
ponents and then taking the forward images of all possible unions of recurrent components. In
the next section, we will provide an algorithm and an estimate of computational complexity
based on graph-theoretic techniques.

2.2. Algorithms. As seen in Theorem 2.3 and Corollary 2.4, the recurrent components
play an important role in computing attractor-repeller pairs. In fact, by taking all forward
and backward images from all possible unions of recurrent components we can construct all
possible attractor-repeller pairs, but we would like a more efficient algorithm. Also, attractors
generated by different unions of recurrent components might be the same, and we would like to
avoid redundant calculation. In order to control this problem, we introduce the inclusion graph
between recurrent components describing which recurrent components are reachable by which
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other components. Thus the inclusion graph I has one vertex for each recurrent component
and there is an edge from the vertex corresponding to R1 to the vertex corresponding to R2 if
R2 ⊂ Γ+(R1). We now present a complete algorithm for finding all attractor-repeller pairs. Let
R1, · · ·Rs be the set of all recurrent components.

STEP 1. Compute inclusion graph and attractors from single recurrent components.

ComputeInclusionGraphAt(G)
1. color(G)← BLACK
2. for each H ∈ F(G)
3. if H = Rj then add j to I(G)
4. if color(H)=WHITE then ComputeInclusionGraphAt(H)
5. if color(H)=BLACK then add I(H) to I(G)
6. if G ∈ Ri then add I(G) to I(i)

ComputeAttractorFrom(G, i)
1. color(G)← BLACK
2. add G to ATR
3. for each H ∈ F(G)
4. if H = Rj then add ATT (j) to ATR
5. else if color(H)=WHITE then ComputeAttractorFrom(H, i)

main()
1. for each G ∈ G, color(G)←WHITE
2. for each G ∈ G
3. if color(G)=WHITE then ComputeInclusionGraphAt(G)
4. L =TopologicalSort(I)
5. for each G ∈ G color(G)←WHITE
6. for each 1 ≤ i ≤ s in ascending values of L(i)
7. make ATR empty
8. ComputeAttractorFrom(G ∈ L−1(i), i)
9. add ATR to ATT (i)

The above algorithm assumes that the recurrent components have been computed, which re-
quires linear time, and that the recurrent components have each been compressed into a single
vertex which requires O(r l(r)) time, where r is the number of grid elements in the forward
image of the recurrent set, F(R). Also, the function TopologicalSort() operates on the acyclic
graph I, the inclusion graph for the recurrent components, and produces a Lyapunov function L
for I in linear time, see Sections 23.4 and 23.5 in [9]. We note that during the ComputeInclu-
sionGraphAt() function, I(G) is stored for each grid element G because components might not
be connected directly in the original graph.

The algorithm produces a list ATT (i) for 1 ≤ i ≤ s of all attractors generated by a single
recurrent component. Also we note we can apply the same procedure for the reverse graph to
get all repellers generated by a single component, say REP (i) for 1 ≤ i ≤ s. Then the vectors
of lists A and R of all attractor-repeller pairs is generated as follows.

STEP 2. Compute all attractor-repeller pairs.

IsMaximal(list L)
1. for each l ∈ L, if I(l) 6⊂ L then return FALSE
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2. return TRUE

FindMaximalInclusions(int n, list L)
1. add n to list L
2. if IsMaximal(L), save L in PL
3. for each n + 1 ≤ j ≤ s, FindMaximalInclusions(j, L)

ComputeAttractorRepellerPairs()
1. for each 1 ≤ i ≤ s
2. FindMaximalInclusions(i, L = empty list )
3. for each list L in PL and for each 1 ≤ i ≤ s
4. if i ∈ L, A(L) = A(L) ∪ATT (i)
5. if i /∈ L, R(L) = R(L) ∪REP (i)

2.3. Computational complexity. In the above algorithms, we employ a linear-time, depth-
first search style algorithm a constant number of times to compute the recurrent components, the
inclusion graph, and all attractor-repeller pairs. In addition, the algorithm to test for the max-
imality of unions of recurrent components requires at most s l(s) comparisons in IsMaximal()
which are performed at most p times, where p is the number of attractor-repeller pairs. Therefore
we have the following theorem. Recall that l(·) is the complexity of searching a list in whatever
data structures are used to implement the algorithm.

THEOREM 2.5. Given a multivalued map F : G −→→G, the complexity to find all distinct
attractor-repeller pairs is at most O(|F|+ |G|+ sp+ r l(r)), where |F| and |G| are the numbers
of edges and vertices in the graph respectively, s is the number of recurrent components, p is the
number of attractor-repeller pairs, and r is the number of elements in the forward image of R.
In the worst case p ≤ 2s.

3. Computation of Lyapunov functions

We will follow the general scheme in [1] with some modifications to implement an algorithm
to approximate Lyapunov functions. We assume that an outer approximation F : G −→→G of f
is given which is closed. We will approximate a continuous Lyapunov function by a function
which is constant on the interiors of the grid elements.

Let P = (A,A∗) be a given attractor repeller pair. The first step is to define such a piecewise
constant function which measures the relative distances from a grid element to the attractor and
the repeller.

DEFINITION 3.1. Let A and B be compact subsets of X where the intersection A ∩B need
not be empty. A function v(A,B) : X\(A∩B)→ [0, 1] a called a distance potential for the pair
(A,B) if

(i) v(A,B) is locally Lipschitz continuous on X\(A ∩B),
(ii) v−1

(A,B)(0) = A\(A ∩B),

(iii) v−1
(A,B)(1) = B\(A ∩B).

While any distance potential can be used, we consider the function

v(A,B)(x) =
d(x,A)

d(x,A) + d(x,B)
,

where the distance function d(·, ·) is derived from the metric on X . In [1] it was shown that
v(A,B)(x) is a distance potential. For each grid element G, choose a representative xG ∈ int(G).
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Define vP : G → R by vP(G) = v(|A|,|A∗|)(xG). Since |A| and |A∗| intersect possibly only on
the boundary of grid elements, vP is well-defined and vP(G) = 0 for all G ∈ A and vP(G) = 1
for all G ∈ A∗.

Following the construction in [1], for the attractor-repeller pair P a discrete Lyapunov func-
tion on G, which is a piecewise constant weak Lyapunov function on X, can be obtained by∑∞

k=1 2−k−1v∗P(G, k) where v∗P(G, k) = maxH∈Γk
+(G) vP(H). To compute v∗P(G, k) for fixed

G and k, one can use a depth-first search, but this method is highly inefficient if a search is
performed for each grid element and each relevant k > 0. To obtain a reasonably efficient al-
gorithm we use the fact that the graph on G \ (A ∪ A∗) is acyclic and every complete orbit γG

with G ∈ G \ (A∪A∗) is a path between the attractor and repeller, cf. [1] (Proposition 3.8), and
define a new Lyapunov function by

(3.1) WP(G) =


0 if G ∈ A,
1 if G ∈ A∗,
1
2v∗P(G, 0) + 1

2 max
H∈F(G)

{WP(H)} otherwise.

Note thatW is recursively defined withWP(G) ∈ [0, 1] for all G ∈ G.

LEMMA 3.2. The functionWP defined in equation (3.1) is a Lyapunov function in the sense
of Definition 1.10 withW−1

P (0) = A andW−1
P (1) = A∗. Moreover,WP is a piecewise-constant,

weak Lyapunov function for f on X provided F is an outer approximation of f.

Proof: First recall some properties of v∗P which can be found in Lemma 6.5 of [1]: v∗P(G, k) = 0
if and only if G ∈ A, v∗P(G, k) = 1 if and only if G ∈ A∗, and v∗P(G, k) ≥ vP(H, k) for all
H ∈ F(G).

By definitionWP(G) = 0 for all G ∈ A andWP(G) = 1 for all G ∈ A∗. For G /∈ A, we
haveWP(G) ≥ 1

2v∗P(G, 0) > 0. If G /∈ A∗, thenWP(G) ≤ 1
2v∗P(G, 0) + 1

2 < 1, which implies
(a).

To prove (b) and (a) we will showWP(G) >WP(H) for G /∈ (A ∪A∗). Define

Ci = {G 6∈ A ∪ A∗ | i ≥ 0 is the minimum integer such that F i(G) ⊂ A}.

Note that C0 = A and A∗ ∩ Ci = ∅ for all i ≥ 0. Now we proceed by induction on i > 0. For
G ∈ C1 we haveWP(G) > 0 =WP(H) for all H ∈ F(G) since H ∈ A and G /∈ A.

Let G ∈ Ci+1. Then for any H ∈ F(G) and for all I ∈ F(H) we have H ∈ Ci and

WP(G) ≥ 1
2v∗P(G, 0) + 1

2WP(H) > 1
2v∗P(G, 0) + 1

2WP(I) ≥ 1
2v∗P(H, 0) + 1

2WP(I)

where the strict inequality follows by induction, and thus

WP(G) > 1
2v∗P(H, 0) + 1

2 max
I∈F(H)

{WP(I)} =WP(H) for all H ∈ F(G).

Now we need to prove that the discrete function WP converges to a continuous Lyapunov
function for f on X. Here we assume that F is the minimal multivalued map for f on G, though
one can define a notion of convergent outer approximations, see [1]. We use several results from
[1] which we briefly review here.

Let P = (A,A∗) be a attractor-repeller pair for f . Define the function

VP (x) =
∞∑

k=0

2−k−1v∗P (x, k) where v∗P (x, k) = max
y∈γk

x

vP (y) for k ≥ 0.

Then VP is a Lyapunov function for the attractor-repeller pair P = (A,A∗), as was proved by
several authors in the case of homeomorphisms [11, 12, 13] and in general in [1].
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Let Gn be a sequence of grids with diam(Gn) → 0 as n → ∞. By Theorem 5.5 in [1]
there exist attractor-repeller pairs Pn = (An,A∗n) such that (|An|, |A∗n|) → (A,A∗) in the
Hausdorff metric. Define v∗|Pn|(x, k) = maxy∈|Γk

+(G)| v|Pn|(y) for k ≥ 0. We now show that
Wn
P converges to VP uniformly on X .

THEOREM 3.3. For every ε > 0 there exists a constant M > 0 and N(ε) ≥ 0 such that

|VP (x)−WPn(x)| < ε[1 + Lipv + M(Lipv + 1)] for all n ≥ N(ε).

First we need the following lemma from [1].

LEMMA 3.4 ([1] Lemma 6.6). Let x ∈ G ∈ G. Then for each k and ε > 0 there exists an
N(ε, k) such that

|v∗|Pn|(x, k)− v∗P (x, k)| < ε uniformly in x ∈ X,

and
|v∗|Pn|(x, k)− v∗Pn(G, k)| ≤ εLipv for n ≥ N(ε, k).

COROLLARY 3.5. Let x ∈ G ∈ G and H ∈ Fk(G) for k ≥ 0. Then for each k ≥ 0 and
ε > 0 there exists an N(ε, k) such that

|v∗|Pn|(x, k)− v∗Pn(H, 0)| ≤ εLipv + 2kε(Lipv + 1) for n ≥ N(ε, k).

Proof: First we prove that

|v∗Pn(G, k)− v∗Pn(H, k − 1)| < 2ε(Lipv + 1) for H ∈ F(G) and k ≥ 1.

Since H ∈ F(G), there is x′ ∈ G such that f(x′) ∈ H, and v∗P (f(x′), k − 1) = v∗P (x′, k). So
by the Lemma 3.4 there exists N such that

|v∗Pn(H, k − 1)− v∗Pn(G, k)|
≤ |v∗Pn(H, k − 1)− v∗|Pn|(f(x′), k − 1)|

+ |v∗|Pn|(f(x′), k − 1)− v∗P (f(x′), k − 1)|+ |v∗P (f(x′), k − 1)− v∗|Pn|(x
′, k)|

+ |v∗|Pn|(x
′, k)− v∗Pn(G, k)|

≤ |v∗Pn(H, k − 1)− v∗|Pn|(f(x′), k − 1)|+ |v∗|Pn|(f(x′), k − 1)− v∗P (f(x′), k − 1)|
+ |v∗P (x′, k)− v∗|Pn|(x

′, k)|+ |v∗|Pn|(x
′, k)− v∗Pn(G, k)|

≤ εLipv + ε + ε + εLipv = 2ε(Lipv + 1).

Thus we have

|v∗|Pn|(x, k)− v∗Pn(H, 0)|
≤ |v∗|Pn|(x, k)− v∗Pn(G0, k)|+ |v∗Pn(G0, k)− v∗Pn(G1, k − 1)|

+ |v∗Pn(G1, k − 1)− v∗Pn(G2, k − 2)|+ · · ·+ |v∗Pn(Gm−1, 1)− v∗Pn(H, 0)|
≤ εLipv + 2kε(Lipv + 1),

where G0 = G, Gk = H and Gi ∈ F(Gi−1) for each 1 ≤ i ≤ k.

Proof of Theorem 3.3: Using Lemma 3.4, it is shown in [1] (Theorem 6.7) that there exists N(ε)
such that |VP (x)− V|Pn|(x)| < ε, and so we have

|VP (x)−WPn(x)| ≤ |VP (x)− V|Pn|(x)|+ |V|Pn|(x)−WPn(G)|
< ε + |V|Pn|(x)−WPn(G)|.
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Now also applying Corollary 3.5 we have∣∣∣∣∣
K∑

k=0

2−k−1v∗|Pn|(x, k)−WPn(G)

∣∣∣∣∣
=

∣∣∣∣∣1
2v∗|Pn|(x, 0) +

K∑
k=1

2−k−1v∗|Pn|(x, k)− 1
2v∗Pn(G, 0)− 1

2 max
H∈F(G)

W(H)

∣∣∣∣∣
≤ 1

2εLipv +

∣∣∣∣∣
K∑

k=1

2−k−1v∗|Pn|(x, k)− 1
2 max

H∈F(G)

{
1
2v∗Pn(H, 0) + 1

2 max
In∈F(H)

W(I)
}∣∣∣∣∣

≤ 1
2εLipv +

∣∣∣∣∣
K∑

k=1

2−k−1v∗|Pn|(x, k)− 1
4v∗Pn(H ′, 0)− 1

4 max
I∈F(H′)

W(I)

∣∣∣∣∣
where H ′

n is a grid element which attains the maximum of the set {1
2v∗Pn(H, 0)+ 1

2 max
I∈F(H)

|H ∈

F(G)}. Now

∣∣∣∣∣
K∑

k=0

2−k−1v∗|Pn|(x, k)−WPn(G)

∣∣∣∣∣
≤ 1

2εLipv + 1
4 |v

∗
|Pn|(x, 1)− v∗Pn(H ′, 0)|+

∣∣∣∣∣
K∑

k=2

2−k−1v∗|Pn|(x, k)− 1
4 max

I∈F(H′)
W(G)

∣∣∣∣∣
≤ 1

2εLipv + 1
4 [εLipv + 2ε(Lipv + 1)]

+

∣∣∣∣∣
K∑

k=2

2−k−1v∗|Pn|(x, k)− 1
4 max

I∈F(H′)

{
1
2v∗Pn(I, 0) + 1

2 max
J∈F(I)

W(J)
}∣∣∣∣∣

Repeating this estimate we obtain∣∣∣∣∣
K∑

k=0

2−k−1v∗|Pn|(x, k)−WPn(G)

∣∣∣∣∣
≤

K∑
k=1

2−kεLipv +
K∑

k=1

2−kkε(Lipv + 1) < ε[Lipv + M(Lipv + 1)]

for all K > 0 a fixed constant M , since the last series converges. Hence

|VP −WPn | < ε[1 + Lipv + M(Lipv + 1)].

3.1. Algorithms. In the previous section we proved the existence of a Lyapunov function
WP for an attractor-repeller pair for F which is a weak Lyapunov function for f and when
applied to a sequence of grids Gn with diam(Gn) → 0 converge to a continuous Lyapunov
function for an attractor-repeller pair of f. In this section, we provide explicit algorithms for
computingWP .

First we need to compute the distance potential vP . While in principle one could directly
compute vP , particularly on regular grids, it is computationally expensive to compute the dis-
tances between sets of grid elements. Therefore, the following algorithm approximates the func-
tion vP by

v̂P(G) =
d̂(G,A)

d̂(G,A) + d̂(G,A∗)
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where d̂(G,S) = minH∈S d(xG, xH). In other words, distances between sets of grid elements
are computed by the minimum distance between the representative points in each set.

The next two lemmas show that the difference between the Lyapunov functionWP computed
using the distance potential vP and the function ŴP computed using v̂P decreases linearly with
the diameter of the grid.

LEMMA 3.6. If S ⊂ G and G /∈ S, then 0 < d̂(G,S)− d(xG, |S|) ≤ diam(G).

Proof: By definition, d̂(G,S) = minH∈S d(xG, xH) ≥ d(xG, |S|) = minx∈|S| d(xG, x). Let
y ∈ |S| be a minimizer of d(xG, |S|). Then there exists H ∈ S such that y ∈ H so that
d(xH , y) ≤ diam(G). Therefore d̂(G,S) ≤ d(xG, xH) ≤ d(xG, |S|) + diam(G).

LEMMA 3.7. If P = (A,A∗) is an attractor-repeller pair for F with |A| ∩ |A∗| = ∅, then
there exists C(dist(|A|, |A∗|)) > 0 such that |̂vP(G)− vP(G)| ≤ C diam(G) and |̂v∗P(G, k)−
v∗P(G, k)| ≤ C diam(G) for all G ∈ G \ (A ∪ A∗) and k ≥ 0. Moreover, if ŴP is the function
defined by equation (3.1) with distance potential v̂P , then |ŴP(G)−WP(G)| ≤ C diam(G) for
all G ∈ G.

Proof: Using Lemma 3.7,

|̂vP(G)− vP(G)| ≤ 2 diam(G) diam(X)
[d(|A|, |A∗|)]2

.

Suppose v̂∗P(G, k) − v∗P(G, k) > C diam(G). Then there is a maximizer H ∈ Γk
+(G) such

that v̂∗P(G, k) = v̂P(H) so that v̂P(H)− vP(H) ≥ v̂∗P(G, k)− v∗P(G, k) > C diam(G), which
is a contradiction. A similar contradiction is reached if v∗P(G, k)− v̂∗P(G, k) > C diam(G).

Finally,

|ŴP(G)−WP(G)| ≤ 1
2 |̂vP(G, 0)− vP(G)|+ 1

2 | max
H∈F(G)

ŴP(H)− max
H∈F(G)

WP(H)|.

Proceeding by induction we may assume that |ŴP(H) −WP(H)| ≤ C diam(G) for all H ∈
F(G). Then by the same argument as in the proceeding paragraph |maxH∈F(G) ŴP(H) −
maxH∈F(G)WP(H)| ≤ C diam(G), and the result follows.

From the definition of ŴP and the acyclicity of the graph on G \ (A ∪ A∗), we provide
the following algorithm to compute ŴP . Note that the algorithm assumes that A has been
compressed into a single vertex, which requires O(a) time, where a is the number of elements
in A, since the multivalued map need not be adjusted because F(A) = A. Also Calculate-̂vP()
is straightforward and not presented.

Calculate-ŴP
1. for each A ∈ A, v̂P(A, 0)← 0, ŴP(A)← 0, color(A)← BLACK
2. for each B ∈ A∗, ŴP(B)← 1, color(B)← BLACK
3. for each G ∈ G \ (A ∪A∗), Calculate-̂vP(G), color(G)←WHITE
4. preimage← A
5. do until preimage = ∅
6. preimage← F−1(preimage)
7. for each G ∈ preimage
8. if for each H ∈ F(G) color(H) = BLACK
9. v̂∗P(G, 0)← max({v̂∗P(H, 0) | H ∈ F(G)} ∪ {v̂P(G)})

10. ŴP(G) = v̂∗P(G, 0) + 1
2 max{ŴP(H) |H ∈ F(G)}
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11. color(G)← BLACK

To summarize, we have given an algorithm for computing an approximation ŴP to a Lya-
punov functionWP for a single attractor-repeller pair P for the multivalued map F . The error
in this approximation decreases linearly with the diameter of the grid. For any grid, WP is a
weak Lyapunov function for the continuous map f. Moreover, if Gn is a sequence of grids with
diam(Gn) → 0 and Pn are suitably chosen, then WPn , and hence also ŴPn , converges to a
continuous Lyapunov function for an attractor-repeller pair for f.

We can extend these results by taking convex combinations of Lyapunov functions for dif-
ferent attractor-repeller pairs to obtain Lyapunov functions for Morse decompositions and for
the recurrent set, as described in [1]. Indeed, if one takes a suitable convex combination of Lya-
punov functions for all attractor-repeller pairs of F , i.e. W =

∑
P αPWP with

∑
P αP = 1,

suitably ordered, then as diam(Gn)→ 0 these Lyapunov functions forF converge to a Lyapunov
function for the chain recurrent set of f, [1] (Theorem 6.13).

3.2. Computational complexity. First we assume the distance potential function v̂P has
already been computed for a given attractor-repeller pair, so that Calculate-̂vP is not done in line
3 of Calculate-WP .

THEOREM 3.8. Assume a distance potential function v̂P has been computed for an attractor-
repeller pair P. Then the complexity to computeWP is

O

a +
∑

G∈G\(A∪A∗)

OG(MG −mG + 2)

 ,

where a is the number of elements in A, OG is the out-degree, the number of edges with G as
their initial vertex, MG = min{k : Fk(G) ⊂ A}, and mG = min{k : Fk(G) ∩ A 6= ∅}.

Proof: To compress the attractor to a single vertex requires operations on the order of the
number of elements of the attractor, O(a). Since the graph G\(A ∪ A∗) is acyclic with each
G ∈ G\(A∪A∗) possessing a complete orbit fromA∗ toA in G, the numbers MG,mG > 0 are
well-defined. To calculate WP at G we must compute v∗P(G, 0) and maxHj∈F(G){WP(Hj)}.
Both are computed when their values at all vertices in the forward image of G have been com-
puted, by finding the maximums over these values on F(G). The number of comparisons in this
step is OG. Moreover, when vertex G is reached in a particular preimage, the forward image
must be checked (line 8) to determine if the function values can be computed at G, which re-
quires OG checks. Since each vertex can be found many different times in a backward image of
the attractor and the number of times that each vertex is found is bounded by MG−mG + 1, the
total number of operations is bounded by

O

 ∑
G∈G\(A∪A∗)

OG(MG −mG + 2)

 .

To calculate the distance potential function v̂P(G) for a given G ∈ G \ (A ∪ A∗), we must
compute the minimum distances between xG and the representatives in the attractor and repeller
which gives the following theorem.

THEOREM 3.9. Given an attractor-repeller pair P, the complexity to calculate the distance
potential v̂P is O(|G| − |A| − |A∗|)(|A|+ |A∗|). which is bounded by O(|G|2).

Proof: The first part is trivial. The maximum of (|G|−|A|−|A∗|)(|A|+ |A∗|) over |A|+ |A∗| ≤
|G| is (|G| − 1

2 |G|)(
1
2 |G|) = 1

4 |G|
2 for sufficiently large |G|.
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Now we summarize the overall computational complexity for the algorithm. Note that we
assume that the multivalued map F is given on a grid G, and hence the computational cost to
compute F is not included in the following theorem, which is a consequence of Theorems 2.5,
3.8, and 3.9.

THEOREM 3.10. The overall complexity to approximate the Lyapunov function is

O

|F|+ |G|+ sp l(s) + r l(r) + p|G|2 +
p∑

i=1

ai +
∑

G∈G\(A∪A∗)

[OG(M i
G −mi

G + 2)]


where s is the number of recurrent components, p is the number of attractor-repeller pairs with
p ≤ 2s, r is the cardinality of F(R), a is the cardinality of A, OG is the cardinality of F(G),
MG = min{k : Fk(G) ⊂ A}, and mG = min{k : Fk(G) ∩ A 6= ∅}.

Recall that l(n) is the complexity of searching a list of n elements for the data structure used
to implement the algorithm. Using binary-search trees, at worst l(n) = O(log(n)), and using a
good hash table l(n) can be expected to be nearly constant.

4. Examples

In this section we present the results from three simple examples drawn from the one-
dimensional logistic map and the two-dimensional van der Pol ODE. For the logistic map,
f(x) = λx(1 − x), we consider two values of the parameter. At λ = 3.3, the chain recur-
rent set contains two unstable fixed points and a stable period-2 orbit, and at λ = 3.835, there is
a stable period-3 orbit whose dual repeller is a chaotic set.

In the first case, we took a grid of intervals by dividing [0, 1] into 217 equal length subinter-
vals. In this graph there were three recurrent components and two nontrivial attractor-repeller
pairs. In the second case, we divided [0, 1] equally into 220 subintervals, and the graph contains
four recurrent components and three nontrivial attractor-repeller pairs. Figure 2 shows the graphs
of Lyapunov functions. The points at the absolute minima correspond to the periodic orbits.

(a) (b)

FIGURE 2. Lyapunov function for logistic map for (a) λ = 3.3 and n = 217 =
131, 072 and (b) with λ = 3.385 and n = 220 = 1, 048, 576.

We also consider the van der Pol ODE, ẋ = y and ẏ = −x + (1 − x2)y. It is well known
that this system has a stable periodic orbit and one unstable equilibrium point at (0, 0). Figure
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3 shows a Lyapunov function on [−4, 4] × [−4, 4] which was subdivided seven times in each
direction to obtain a rectangular grid of 214 = 16, 384 elements. We used GAIO [8] to produce
a multivalued map for the time-τ map with τ = 0.2. The multivalued map has two components
and one nontrivial attractor-repeller pair. Note that a continuous Lyapunov function for the time-
τ map may not be a strict Lyapunov function for the flow. In [1], a method is given for adjusting
the above approximations to be certain to obtain an approximate Lyapunov function for the flow,
but we do not implement it here.

Also we note that the domains used in these examples, the interval [0, 1] for logistic map and
[−4, 4] × [−4, 4] for the van der Pol ODE, are not invariant and do not yield a closed directed
graph. In this case, one first restricts the multivalued map to the maximal invariant set in G.

FIGURE 3. Lyapunov function for the van der Pol ODE. In (b) the grayscale
represents the height.
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