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ABSTRACT. In this paper we give a new definition of the chain recurrent set
of a continuous map using finite spatial discretizations. This approach allows
for an algorithmic construction of isolating blocks for the components of Morse
decompositions which approximate the chain recurrent set arbitrarily closely as
well as discrete approximations of Conley’s Lyapunov function. This is a natu-
ral framework in which to develop computational techniques for the analysis of
qualitative dynamics including rigorous computer-assisted proofs.
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Conley’s Fundamental Decomposition Theorem and its extension to Morse de-
compositions is a powerful tool in dynamical systems theory. However, the frame-
work on which the standard theory is built does not lead naturally to an algorithmic
or computational approach for the approximation of the chain recurrent set, i.e.
generation of Morse decompositions or the approximation of a Lyapunov function
for the gradient-like part of the system. One can approximate the chain recurrent
set by the ε-chain recurrent set for finite ε > 0, but there are no algorithmic or
computational techniques for computing this set directly.

In this paper, we present an alternative approach based on finite discretizations
and combinatorial multivalued maps. This approach has several advantages. The
basic elements of the theory can be proved in a straightforward manner. Moreover,
the methods are inherently combinatorial and hence algorithmic. The framework
leads naturally to computational techniques for analyzing qualitative dynamics in-
cluding rigorous computer-assisted proofs, see e.g. [12, 16, 4, 5].

1. Introduction

1.1. Preliminaries. We begin with a suitable definition of a dynamical sys-
tem. Let (X, d) be a compact metric space X with metric d.
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DEFINITION 1.1. Let T denote either Z or R and T+ denote either Z+ =
{0, 1, 2, . . .} or R+ = [0,∞). A dynamical system on X is a continuous map
ϕ : T+ ×X → X that satisfies the following two properties:

(i) ϕ(0, x) = x,
(ii) ϕ(t, ϕ(s, x)) = ϕ(t + s, x), ∀s, t ∈ T+.

We adopt the additional property that for t > 0,
(iii) ϕ(t, X) = X and consequently

ϕ(−t, x) := {y ∈ X | ϕ(t, y) = x} 6= ∅.

The last condition implies that ϕ extends to a (possibly) multivalued map (for
t < 0) on all of T×X . In this case, a complete orbit of ϕ through x is a function
γx : T → X satisfying γx(0) = x and γx(t+s) = ϕ(s, γx(t)) for all t, s ∈ T. If in
the above definition ϕ extends to a single-valued, continuous map on T×X , then ϕ
is either an iteration of a homeomorphism or is a flow. In the case of discrete time
dynamical systems it is often useful to write ϕ in terms of its generator and define
f = ϕ(1, ·). Then ϕ(n, ·) = fn(·) for n ∈ Z+, where fn is the n-th composition
of f .

An important question in the understanding of dynamical systems is how
ϕ(t, x) evolves as t → ∞ for all x ∈ X . Answering this question begins with
the fundamental notions of invariant and isolated invariant sets.

DEFINITION 1.2. A subset S ⊂ X is called an invariant set if ϕ(t, S) = S,
for all t ∈ T+. A compact subset N ⊂ X is called an isolating neighborhood if

Inv(N,ϕ) ⊂ int(N)

where Inv(N,ϕ) denotes the maximal invariant set under ϕ contained in N . An
invariant set S is called isolated if S = Inv(N,ϕ) for some isolating neighborhood
N .

Natural invariant sets to study for long-term behavior are the α-limit and ω-
limit sets ω(U) = ∩t>0 cl(ϕ([t,∞] ∩ T, U)) and α(U) = ∩t>0 cl(ϕ((−∞,−t] ∩
T, U)), and a first step toward characterizing the dynamics of a system in terms of
transient and nontransient behavior is the development of Morse decompositions
by Conley [2], which in their simplest form are described as follows.

A set A is called an attractor if there exists an open neighborhood U ⊃ A
such that ω(U) = A. An attractor is an isolated invariant set. The associated dual
repeller A∗ is defined as A∗ = {x : ω(x) ∩ A = ∅}, which is also an isolated
invariant set. One can show that if U∗ = X\A, then A∗ = α(U∗). The pair
(A,A∗) is called an attractor-repeller pair and yields the following decomposition
for X:

X = A ∪A∗ ∪ C(A∗, A),
where C(A∗, A) ⊂ {x ∈ X : ω(x) ⊂ A, α(x) ⊂ A∗}. The notions of attractor
and repeller can also be used for invariant subsets S ⊂ X . The restriction ϕ|S is a
dynamical system on S. By letting S play the role of X in the above definitions,
we obtain the notion of an attractor-repeller pair decomposition for any isolated
invariant set S. Attractor-repeller pair decompositions are the coarsest decomposi-
tions of X; note that (X, ∅) and (∅, X) are trivial attractor-repeller pairs. Morse
decompositions are refinements/generalizations of attractor-repeller pair decompo-
sitions and are defined as follows.
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DEFINITION 1.3. A Morse decomposition of X is a finite collection of disjoint
isolated invariant sets (Morse sets) S1, · · · , Sn with a partial ordering � on the
index set {1, · · · , n} such that for every x ∈ X\∪i Si and every complete orbit γx

through x there exist indices i � j so that

ω(x) ⊂ Sj and α(γx) = ∩t≤0 cl(γx((−∞, t])) ⊂ Si.

By decomposing Morse sets into attractor-repeller pairs, Morse decomposi-
tions can be refined. While many systems have a finest Morse decomposition,
there are systems which have (countably) infinitely many attractor-repeller pairs
and hence no finest Morse decomposition. The process of extracting all attractor-
repeller pairs leads to the chain recurrent set introduced by Conley [2].

DEFINITION 1.4. The chain recurrent set R(X) for X is characterized by

R(X) =
⋂
j

(Aj ∪A∗
j ),

where the intersection is taken over all possible attractor-repeller pairs for X .

The chain recurrent set R(X) is an invariant set for ϕ which represents the
smallest set outside of which the dynamics is gradient-like as stated in Conley’s
Fundamental Decomposition Theorem below. The chain components of R(X)
are the equivalence classes of the relation x ∼ y which is defined as follows:
x, y ∈ R(X) are equivalent if for all attractor-repeller pairs (Aj , A

∗
j ) either x and

y are both in Aj or both in A∗
j . The chain recurrent set has only countably many

recurrent components Ri(X), which are not necessarily isolated invariant sets.

THEOREM 1.5 (Conley’s Fundamental Decomposition Theorem [2, 15]). Let
ϕ : T+ × X → X be a dynamical system on a compact metric space X . Then
there are at most countably many chain components {Ri}i∈J of R(X) and there
exists a continuous function V : X → [0, 1] such that

(a) if x /∈ R(X), then V (x) > V (ϕ(t, x)), t > 0, and
(b) for each i ∈ J there exists σi ∈ [0, 1] such that Ri ⊂ V −1(σi).

Moreover, V can be chosen such that σi 6= σj for all i, j ∈ J .

The function V is called a Lyapunov function for ϕ. Note that all Morse
decompositions can be built by grouping chain recurrent components and their
connecting orbits, and hence corresponding Lyapunov functions can be constructed
which are constant on the Morse sets.

1.2. Outline of the main ideas and results. An important goal of this paper
is to present a method for constructing approximations of the chain recurrent set
of a dynamical system and its associated Lyapunov function. The standard way
of defining the chain recurrent set is to consider the ε-chain recurrent set which
consists of all points x for which there exists an ε-chain from x back to itself.
While allowing for an ε-error in the dynamical system is a natural approximation
to the chain recurrent set, this approach is not computable in many circumstances,
and we will proceed by a different path. For a general reference on chain recurrence
see [2] or [15], and for an example where ε-chains have been used successfully in
certain situations see [11] and the references therein.

The first step in our approach is to define a spatial discretization of the metric
space X . In Sections 2 and 3, we introduce the notion of a grid from [13] which
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divides the space into finitely many compact sets. We denote the set of these grid
elements by G. The diameter of the largest element of the grid controls the fineness
of the approximation. After discretization, we define a multivalued map on the grid
which mimics the dynamics of ϕ. To be more precise we define maps F : G −→→G
which ‘converge’ in the proper sense to ϕ as the grid size goes to zero, as explained
in Sections 3 and 5.

A multivalued map F can be thought of as a discrete dynamical system and as
a directed graph. In the latter case the grid elements act as vertices of the graph
and two vertices are connected via an edge if F maps from one vertex to the other.
In Section 3 we define for F the dynamical notions of attractors, repellers, and
recurrent sets and put these in the context of graph theory. The purpose of these
formulations is to demonstrate that the objects we wish to study are computable by
standard graph theoretic algorithms, which are often very efficient, c.f. [3].

As we will see in Section 5, an appropriately defined sequence of multivalued
maps and their associated recurrent sets will converge to the chain recurrent set
of ϕ, providing a new definition of the chain recurrent set — (a similar result can
be found in the work of Osipenko [14]). Furthermore the spatial realization of a
recurrent set for F approximates the chain recurrent set for ϕ, and graph theory
provides a linear-time algorithm for determining the recurrent set of a graph, see
[3]. Hence these approximations are computable. In Section 7 we show that the
spatial realizations of components of the recurrent set of F are isolating blocks
for ϕ. Indeed, this occurs for the spatial realizations of many invariant sets of F .
Moreover, in Section 7 we prove that under certain conditions invariant sets in the
graph converge to isolated invariant sets for ϕ. In particular Morse sets and the
recurrent set have this property.

Section 6 investigates another important tool in dynamical systems theory, Lya-
punov functions. For multivalued maps F one can easily construct (e.g. via graph
theory) a function on the vertices of the graph which is constant on the compo-
nents of the recurrent set and decreases strictly off of the recurrent set, i.e. for each
the vertex that does not lie in the recurrent set, the function attains strictly smaller
values on all vertices in the image under F . We would like to use such Lyapunov
functions for F to approximate a Lyapunov function for ϕ. As the grid size goes
to zero, Lyapunov functions constructed in an arbitrary manner will not generally
converge to a Lyapunov function for ϕ. However, we will describe a method for
constructing Lyapunov functions for F that have the property that for a family of
grids with the grid size going to zero, these discrete Lyapunov functions converge
along a subsequence to a continuous Lyapunov function for ϕ.

In the Sections 2 through 6, for sake of simplicity, the theory is explained for
discrete time dynamical systems, i.e. ϕ(n, ·) = fn, where f : X → X is a
surjective map. We utilize a particular multivalued map F in this case. In Section
7 we formulate general conditions that a multivalued map must satisfy in order for
the theory to hold.

2. Grids and multivalued maps

The first step in developing a computational foundation for Conley’s theory
is the construction of a combinatorial representation of the dynamical system of
interest. This requires a finite description of both the metric space X and the dy-
namical system ϕ. In this section ϕ will be a discrete dynamical system generated
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by a surjective map f : X → X . For the definition of grid and the combinatori-
alization of f only local compactness of X is needed. Therefore, in this section
we assume that X is locally compact and separable. We begin with the following
discretization due to Mrozek [13].

DEFINITION 2.1. A grid on X is a collection G of nonempty compact subsets
of X with the following properties:

(i) X = ∪G∈GG
(ii) G = cl(int(G)) for all G ∈ G

(iii) G ∩ int(H) = ∅ for all G 6= H ∈ G.
(iv) If K ⊂ X is compact, then cov(K,G) = {G ∈ G | G ∩K 6= ∅} is a

finite set.

Observe that if X is compact, then G is finite. The diameter of a grid is defined
by

diam(G) := sup{diam(G) | G ∈ G}.
The realization map | · | is a mapping from subsets of G to subsets of X , and is
defined as |A| := ∪A∈AA ⊂ X . On compact spaces the existence of grids of
arbitrarily small size easily follows from compactness. From this the same can be
achieved in the locally compact case.

THEOREM 2.2. For any locally compact, separable metric space X and ε > 0,
there exists a grid G with diam(G) ≤ ε.

PROOF. The construction involves a simple induction argument. For simplic-
ity first assume that X is compact. By compactness we can choose a finite sub-
cover U = {Ui | i = 1, . . . , n} from the set {Bε(x) | x ∈ X} with Ui = Bε(xi)
for some xi ∈ X . Let V0 :=

{
V 0

i := cl(Ui) | i = 1, . . . , n
}

. Set G1 := V 0
1 . In

general define, recursively,

Vk :=
{

V k
i := cl(V k−1

i \Gk) | i = k + 1, . . . , n
}

,

for k = 1, ..., n − 1, with Gk := V k−1
k . After n − 1 steps we let G :=

{Gi | i = 1, . . . , n}. Clearly condition (i) of Definition 2.1 is satisfied. The fact
that cl(int(V 0

i )) = V 0
i can be used to justify condition (ii). Condition (iii) follows

from the fact that for i > 1

int(Gi) = int(V i−2
i \Gi−1)

=
{
x | x ∈ int(V i−2

i ) \Gi−1

}
.

Clearly diamG = ε.
As for the case that X is locally compact and separable we argue as follows.

Since the space X is locally compact and separable, there exists a sequence of
open relatively compact sets Un ⊂ X such that cl(Un) ⊂ Un+1 for all n ≥ 0, and
X = ∪nUn. Now define Xn := cl(Xn\Xn−1), for n ≥ 1, and X0 = U0. For
each Xn the above proof provides a finite grid Gn with diamGn = ε. Therefore,
G = ∪nGn is then a grid for X with diamG = ε.

For a fixed grid we can define various combinatorial descriptions of the map f .
The combinatorialization of f given below is natural and best suited for explaining
the theory in this paper. We will consider other combinatorial representations of
dynamical systems in Section 6.
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DEFINITION 2.3. The minimal multivalued map associated to f on the grid
G is defined by FG(G) := {H ∈ G | H ∩ f(G) 6= ∅}.

If the underlying grid is clear from context, then we simply write F . To em-
phasize the fact that F is multivalued, that is each element of G is sent to a set of
elements of G, we write F : G −→→G. For two multivalued maps F ,F ′ : G −→→G,
the map F ′ is said to enclose the map F if F(G) ⊂ F ′(G) for every G ∈ G. The
inverse of a given multivalued map F is defined by

F−1(G) := {H ∈ G | G ∈ F(H)} .

From the definition of F−1 it follows that enclosure carries over to inverses, i.e. if
F ′ encloses F , then (F ′)−1 encloses F−1.

The following property is important in the process of going from the combi-
natorial information contained in F to the topological properties of f , and is an
essential requirement for multivalued maps in the context of combinatorializing
dynamical systems.

DEFINITION 2.4. A multivalued map F : G −→→G is an outer approximation of
f : X → X if

f(G) ⊂ int(|F(G)|)
for every G ∈ G.

Szymczak [16] was the first to identify and make explicit use of this essential
concept which is used in Sections 4 through 7 to associate F with the dynamics of
f . The following propositions emphasize the importance of the minimal multival-
ued map.

PROPOSITION 2.5. If F : G −→→G is the minimal multivalued map associated
to f , then F is an outer approximation of f .

PROOF. Let y ∈ f(G). Then y ∈ H for at most finitely many H ∈ G all of
which are by definition in F(G). If y /∈ int(|F(G)|), then there exists a sequence
yn → y which can be chosen to lie in a single grid element H∗ /∈ F(G). However,
in this case, y ∈ cl(H∗) = H∗ so that H∗ ∈ F(G), which is a contradiction.

Observe that determining the minimal multivalued map associated to a map f
requires complete knowledge of the image of f on grid elements. The following
corollary guarantees that the result is true even if one needs to enlarge the images
of F , for example to take into account numerical errors.

COROLLARY 2.6. If F : G −→→G encloses the minimal multivalued map asso-
ciated to f , then F is an outer approximation of f .

A similar proof results in the following proposition used in the theory devel-
oped in the subsequent sections.

PROPOSITION 2.7. If F : G −→→G encloses the minimal multivalued map asso-
ciated to f , then f−1(G) ⊂ int(|F−1(G)|) for any G ∈ G,

The minimal multivalued map is a natural setting in which to design algorithms
to approximate the discrete dynamics of a map, and general computer software has
been developed for this purpose, cf. GAIO [7, 6]. To obtain rigorous information
from these algorithms, one must take into account numerical errors. Thus, a useful
extension of Definition 2.3 is to allow for an error in the image f(G). This leads
to the following definition of a multivalued map.
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EXAMPLE 2.8. Let ε > 0

Fε(G) := {H | Bε(f(G)) ∩H 6= ∅}.

Note that Fε encloses F , the minimal multivalued map for f . In practice there are
always approximation errors in computing the image of f , since f can be evaluated
at only finitely many points, as well as round-off error. If these errors can be
bounded by ε > 0, this example shows that they can be included in the multivalued
map in order to get rigorous statements about the dynamics of the original system.

In Section 4 we will describe other extensions and more general multivalued
maps. In the next section we give a detailed account of the properties of mul-
tivalued maps and their interpretation as both discrete dynamical systems and as
directed graphs.

3. Directed graphs and discrete dynamics

Grids and multivalued maps introduced in the previous section provide a
framework in which to pass from topology to combinatorics and back. In the Sec-
tions 3 through 5 we will assume that the metric space X is compact, and therefore
G is a finite set. It is often useful to treat F : G −→→G as a dynamical system
defined on a finite set. However, from the point of view of developing efficient
algorithms, it is advantageous to simultaneously consider F : G −→→G as a directed
graph whose vertices are the grid elements with an edge from G to H if H ∈ F(G).
Thus, throughout this section we will alternate between concepts from dynamics
and graph theory. The notation F will be used for both a multivalued map and a
directed graph. We begin with some graph theoretic definitions.

DEFINITION 3.1. A directed graph F is closed if F(G) 6= ∅ and F−1(G) 6=
∅ for every vertex G ∈ G.

As a multivalued map the closedness property implies that the space of vertices
G gets mapped onto itself by both F and F−1. This property is closely related
to the surjectivity assumption in Definition 1.1. Unless specified otherwise F is
always assumed to be closed.

PROPOSITION 3.2. Let f : X → X be surjective. If F : G −→→G encloses the
minimal multivalued map associated to f , then F is closed.

PROOF. Since f : X → X for every G ∈ G, f(G) ⊂ X , and hence |F(G)| ∩
X 6= ∅. The assumption that f is surjective implies that for any G ∈ G, there
exists H ∈ G such that f(H) ∩G 6= ∅. Hence |F−1(G)| ∩X 6= ∅.

A complete orbit of F through G is sequence γG = {Gk}k∈Z satisfying G =
G0 and Gk+1 ∈ F(Gk) for every k ∈ Z. Observe that complete orbits of F :
G −→→G are equivalent to bi-infinite paths in the digraph F . We say that a path in
F is nontrivial if it has at least one edge. A forward orbit {Gk | k ≥ 0} and
backward orbit {Gk | k ≤ 0} are denoted by γ+

G and γ−G respectively.
As was indicated in the introduction, the concepts of invariant sets and

attractor-repeller pairs are essential for understanding the structure of dynamical
systems. In the context of a multivalued map F : G −→→G on a finite set the follow-
ing definitions are appropriate.
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DEFINITION 3.3. A subset S ⊂ G is an invariant set for F if S ⊂ F(S), and
S ⊂ F−1(S).

By symmetry S is an invariant set for F if and only if S is an invariant set for
F−1. The following proposition follows immediately from this definition and gives
various characterizations of invariant set which are useful in different contexts.

PROPOSITION 3.4. Let F : G −→→G be closed, then the following statements
are equivalent:

(a) S is an invariant set for F;
(b) FS is closed and thus S = ∩n∈ZFn(S);
(c) for all G ∈ S there exists a complete orbit γG ⊂ S.

By restricting F to an invariant set S, which we denote by FS , one obtains a
closed graph again on which the theory can be applied.

PROOF. We start by showing that (a) implies (b). If F(G) = ∅ for some
G ∈ S, then G 6∈ F−1(S). Similarly, if F−1(G) = ∅ for some G ∈ S, then
G 6∈ F(S). Both statements contradict assumption (a).

We now show that (b) implies (c). For G ∈ S we construct a complete orbit γG

by induction. Let G0 := G. SinceFS is closed, we can choose G1 ∈ F(G)∩S and
G−1 ∈ F−1(G)∩S. Having determined Gk, if k > 0, choose Gk+1 ∈ F(Gk)∩S
and if k < 0, choose Gk−1 ∈ F−1(Gk)∩S. In either case the choice can be made
since FS is closed.

Finally to show that (c) implies (a) we argue as follows. For any G1 ∈ S
there exists a G ∈ F−1(G1) ∩ S. Moreover F(G) ⊂ F(S) for all G ∈ S so that
G1 ∈ F(S), which proves that S ⊂ F(S). The property for F−1 follows from
symmetry.

From Proposition 3.4(c) it is easily seen that if S and S ′ are invariant sets
under F , then S ∪ S ′ is also an invariant set under F . The maximal invariant set
in U ⊂ G is denoted by Inv(U). For k ≤ l let

Γk,l(U) :=
⋃

k≤n≤l

Fn(U).

We write Γk
+(U) = Γk,∞(U) as the k-forward image of U , and similarly Γk

−(U) =
Γ−∞,k as the k-backward image of U . Moreover, Γ(U) denotes the complete
image of U .

DEFINITION 3.5. For a given set U ⊂ G define the ω-limit and α-limit sets of
U by

ω(U) =
⋂
k≥0

Γk
+(U) and α(U) =

⋂
k≤0

Γk
−(U).

PROPOSITION 3.6. Let F : G −→→G be closed and U ⊂ G with F(U) ⊂ U .
Then Inv(U) = ω(U) 6= ∅ with F(ω(U)) = ω(U). Similarly, if F−1(U) ⊂ U ,
then Inv(U) = α(U) 6= ∅ with F−1(α(U)) = α(U).

PROOF. We begin by showing that Inv(U) 6= ∅. Since F is closed, for any
G ∈ U there exists a forward orbit γ+

G ⊂ U . Since U is finite, there exist k1 > k0 ≥
0 such that Gk1 = Gk0 . Let γH = {Hk}k∈Z ⊂ U be the orbit Hk = Gk0+k for
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k = 0, ..., k1−k0 extended periodically with period k1−k0. By Proposition 3.4(c),
γH is invariant, hence Inv(U) 6= ∅.

Now consider any complete orbit γG ⊂ U . It is easily checked that γG ⊂
ω(U). Thus, Inv(U) = ω(U). But F(ω(U)) = ω(U) hence ω(U) is an attractor.

DEFINITION 3.7. Let F : G −→→G be closed. A subsetA ⊂ G is an attractor for
F if F(A) = A. The dual repeller A∗ of an attractor A is the maximal attractor
for F−1 contained in G \ A, and (A,A∗) is called an attractor-repeller pair. In
general a repeller is an invariant set B that satisfies F−1(B) = B and thus is an
attractor for F−1.

The following proposition justifies this definition of an attractor-repeller pair
for a closed graph.

PROPOSITION 3.8. Let F : G −→→G be closed, and let (A,A∗) be an attractor-
repeller pair in G. Then the following statements are true.

(a) A and A∗ are invariant sets for F .
(b) If γG is a complete orbit through G ∈ A, then γ+

G ⊂ A.
(c) If γG is a complete orbit through G ∈ A∗, then γ−G ⊂ A∗.
(d) (A∗,A) is an attractor-repeller pair for F−1.
(e) Let γG be a complete orbit through G ∈ G \ (A ∪A∗). Then

(i) γ−G ∩ A = ∅;
(ii) γ+

G ∩ A∗ = ∅;
(iii) ω(G) ⊂ A and α(G) ⊂ A∗;
(iv) G 6= Gk for all k 6= 0.
That is, γG is a connecting orbit from A∗ to A.

PROOF. To show that A is invariant it is sufficient to show that A ⊂ F−1(A).
So assume that there exists G ∈ A such that G 6∈ F−1(A). Then F(G) ∩ A = ∅.
However F(G) 6= ∅ since F is closed, and hence F(A) 6⊂ A, a contradiction. A
similar argument applies to A∗. Statement (b) follows from the fact that F(A) =
A, and (c) follows from F−1(A∗) = A∗.

Suppose U is an attractor in G \ A∗ that contains A. Let H ∈ U \ A. By
Proposition 3.4, there exists a backward orbit γ−H ⊂ U . Since G is finite, there
exists k, l > 0 such that H−k−l = H−k. If H−k were inA, then by (b) also H ∈ A
contrary to our assumption, thus H−k /∈ (A∪A∗). Therefore B = α(H−k)∪A∗ ⊂
G \ A is an attractor for F−1 since F−1(B) = F−1(α(H−k)) ∪ F−1(A∗) = B.
Moreover B 6= A∗ since H−k ∈ B but H−k /∈ A∗, which contradicts the fact that
A∗ is the dual repeller of A. Hence A is the maximal attractor in G \ A∗ which
proves (d).

In statement (e), (i) follows from (b), and (ii) follows from (c). Also (e(iii))
follows from (d) since ω(G) is an attractor by Proposition 3.6 and ω(G)∩A∗ = ∅
since F−1(A∗) = A∗ and G /∈ A∗. A similar argument shows α(G) ⊂ A∗.

Finally if G = Gk for some k > 0, then G ⊂ ω(G) which contradicts (e(iii)),
and a similar argument holds for k < 0.

Refining the notion of an attractor-repeller pair leads to the following defini-
tion.

DEFINITION 3.9. Let F : G −→→G be closed. A Morse decomposition of G is a
finite collection of invariant sets S1, · · · ,Sn for which there exists a strict partial
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ordering � on the index set {1, · · · , n} that satisfies the following property. Given
a complete orbit {Gk}k∈Z there exist unique 1 ≤ i, j ≤ n and there exist k± ∈ Z
such that

Gk ∈ Si for all k < k− and Gk ∈ Sj for all k > k+.

Moreover if i 6= j, then i � j. The sets Si are called Morse sets.

Off of the Morse sets Si the multivalued map F has a gradient-like structure.
To make this precise we introduce the notion of a Lyapunov function on a directed
graph.

DEFINITION 3.10. A Lyapunov function for a Morse decomposition
{Si | i = 1, . . . , I} of F : G −→→G is a function V : G → [0, 1] satisfying:

(a) if G, H ∈ Si, then V (G) = V (H),
(b) if H ∈ F(G), then V (G) ≥ V (H),
(c) if H ∈ F(G), and G and H do not belong to the same Morse set, then

V (G) > V (H).

Lyapunov functions for Morse decompositions of F can easily be constructed
using linear time graph algorithms, see [3]. In Section 6 we discuss the construc-
tion of Lyapunov functions which limit on a Lyapunov function for the underlying
dynamical system.

It is often useful to be able to partition a digraph using Lyapunov functions.
We will use the following notation:

Va = {G ∈ G | a ≤ V (G)} , V b = {G ∈ G | V (G) ≤ b} , V b
a = Va ∩ V b.

The following proposition explains the relationship between Morse sets and
attractor-repeller pairs.

PROPOSITION 3.11. If S is a Morse set, then there exist attractor-repeller
pairs (Ai,A∗i ), i = 1, 2 such that

S = A1 ∩ A∗2.

PROOF. Let V be a Lyapunov function for the Morse decomposition such that
V −1(c) = S. Then the sublevel set V c satisfies F(V c) ⊂ V c, and hence V c

contains an attractor. Since S = V −1(c) ⊂ V c we have S ⊂ ω(S) ⊂ ω(V c), and
consequently S ⊂ ω(V c). The same argument applies to the superlevel set Vc, and
thus S ⊂ α(Vc). If we set A1 = ω(V c) and A∗2 = α(Vc), then S ⊂ ω(V c) = A1,
and S ⊂ α(Vc) = A∗2. Consequently, S ⊂ A1 ∩A∗2 ⊂ V c ∩Vc = S, which proves
that S = A1 ∩ A∗2.

Using the above proposition we establish a fundamental relationship between
Morse decompositions of a graph and the set of attractor-repeller pairs.

PROPOSITION 3.12. Let F : G −→→G be closed, and let {Si | i = 1, · · · , I} be
a Morse decomposition of F . Then there exists a collection of attractor-repeller
pairs

{
(Aj ,A∗j ) | j = 1, . . . , J

}
such that

I⋃
i=1

Si =
J⋂

j=1

(Aj ∪ A∗j ).
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Morse decompositions split the dynamics of F into gradient-like dynamics off
of the Morse sets and ‘recurrent’ dynamics on the Morse sets. Next we introduce
the notion of recurrence for F in order to describe the largest set on which F is
gradient-like.

DEFINITION 3.13. The recurrent set of a multivalued map F : G −→→G is de-
fined as follows

R(F) := {G ∈ G | there exists a nontrivial path from G to G} .

The following result relates the recurrent set of a graph to the set of attractor-
repeller pairs.

PROPOSITION 3.14. Let F : G −→→G be closed. Let the set of all attractor-
repeller pairs in F be given by

{
(Aj ,A∗j ) | j = 1, . . . , J

}
. Then,

R(F) =
J⋂

j=1

(
Aj ∪ A∗j

)
PROOF. We begin by showing that R(F) ⊂

⋂J
j=1 (Aj ∪A∗j ). Let G ∈ R(F)

and assume that there exists an attractor-repeller pair (Aj ,A∗j ) such that G 6∈
Aj ∪ A∗j . By Proposition 3.8(e(iv)), there is no nontrivial path from G to G, a
contradiction.

Now assume G ∈ ∩J
j=1(Aj∪A∗j ) but is not recurrent. Thus for every complete

solution γG through G, we have G 6= Gk for all k > 0. Define

P := {H ∈ G | there exists a nontrivial path from G to H} .

Clearly, F(P) ⊂ P and G /∈ P . By Proposition 3.6, ω(P) = A ⊂ P is an
attractor which does not contain G. We will reach a contradiction if G /∈ A∗. If
G ∈ A∗, then there is a complete path γG ⊂ A∗ and H ∈ γ+

G ∩ A which would
imply that A ∩A∗ 6= ∅. Therefore, G /∈ (A ∪A∗), a contradiction.

DEFINITION 3.15. The components of R(F) are the equivalence classes de-
fined by the relation G ∼ H if there exist paths from G to H and from H to G.

Observe that components of R(F) are the Morse sets of the finest Morse de-
composition. In the terminology of graph theory, the components of R(F) are
precisely the (nontrivial) strongly connected components of F which contain at
least one edge. This characterization of R(F) implies that there exists a linear
time algorithm to construct a Lyapunov function. Since G is a finite set and we are
considering Lyapunov functions with images in R, we can choose V : G → [0, 1]
with the following properties.

PROPOSITION 3.16. There exists a Lyapunov function V : G → [0, 1] such
that for any c ∈ R, V −1(c) is either a single component of R(F), an element of
G \ R(F), or empty. Furthermore, in the latter two cases

(
ω(V c), α(Vc)

)
is an

attractor-repeller pair.
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4. Isolating neighborhoods

After discretizing both f and X and studying the dynamics of the discrete
system F , the next logical question is whether the characteristics of the discrete
dynamics, such as Morse sets, have bearing on the dynamics of f . We will see
in this section that most invariant sets for the discrete dynamics yield information
about isolation for the dynamics of f . Recall that a compact set N ⊂ X is an
isolating neighborhood if Inv(N, f) ⊂ int(N). A compact neighborhood that
satisfies the property:

(1) f−1(N) ∩N ∩ f(N) ⊂ int(N),

is clearly an isolating neighborhood. Easton called such an isolating neighborhood
an isolating block [8]. The main result in this section is the relationship between
Morse sets for F and isolating blocks for f .

THEOREM 4.1. Let S be a Morse set for F , an outer approximation of f , then
its geometric realization N = |S| is an isolating block for f .

PROOF. The invariant set S is a Morse set and therefore, by Proposition 3.11, it
is the intersection of a single attractorA and a single repellerA′∗, i.e. S = A∩A′∗.
Now N = |S| = |A ∩ A′∗|, and by construction F(S) = F(A ∩A′∗) ⊂ F(A) =
A, and F−1(S) ⊂ A′∗. We obtain

f(N) = ∪G∈Sf(G) ⊂ ∪G∈S int(|F(G)|)
= int(|F(S)|) ⊂ int(|A|).

Similarly for the repeller we obtain

f−1(N) = ∪G∈Sf−1(G) ⊂ ∪G∈S int(|F−1(G)|)
= int(|F−1(S)|) ⊂ int(|A′∗|).

Combining these two inclusions yields the following inclusion

f−1(N) ∩N ∩ f(N) ⊂ int(|A′∗|) ∩ |A ∩ A′∗| ∩ int(|A|)
⊂ int(|A ∩ A′∗|) = int(N),

which proves that N is an isolating block.

A important byproduct of the above theorem is that one can also find attractor-
repeller pairs for f via attractor-repeller pairs for F . See Proposition 5.5. The
fact that attractor-repeller pairs for F can be used to find attractor-repeller pairs for
f can be further generalized to Morse decompositions in the sense that a Morse
decomposition for F will provide isolating blocks for a Morse decomposition for
f .

COROLLARY 4.2. Let {Si}, i ∈ (I,�), be a Morse decomposition for F .
Then, the collection of sets {Si}, with Si = Inv(|Si|, f) form a Morse decomposi-
tion for f .

EXAMPLE 4.3. A simple counterexample shows that invariant sets S that are
not Morse sets do not yield isolating neighborhoods in general. Indeed, consider
the following example on the 2-disc X = D2. Let f : D2 → D2 be a rotation
over 90 degrees. Consider the concentric circles around the origin with radii r =
1/N, 2/N, ..., 1. This gives a grid G for D2. Let F be the minimal multivalued
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map defined in Definition 2.3. One can now find various invariant sets which do
not yield isolating neighborhoods.

Morse sets are obvious candidates for finding isolating neighborhoods. How-
ever, there may be invariant sets which are not Morse sets but still yield isolating
neighborhoods. If a Morse set for F is minimal (recurrent component), i.e. it does
not allow further attractor-repeller pair decompositions, then it may still have in-
variant subsets. Sometimes these sets provide additional isolating neighborhoods
and reveal additional information about the structure of the dynamics of f at the
recurrent components. In order to achieve this we introduce the notion of isolated
invariant sets relative to a Morse set.

An invariant set S is isolated with respect to a Morse set S ′ if

Inv({G ∈ S ′ | G ∩ |S| 6= ∅}) = S
Note that one choice of S ′ is the whole grid G. This notion of isolation combined
with the outer approximation property also leads to isolating blocks. We can now
extend Theorem 4.1 as follows.

THEOREM 4.4. Let S be an isolated invariant set with respect to a Morse set
S ′. Then |S| is an isolating block for f .

PROOF. By assumption N ′ = |S ′| is an isolating block. Then for the isolated
invariant set S ⊂ S ′, set N = |S|. The condition that N is also an isolating block
is equivalent to saying that boundary points leave N immediately in either forward
or backward time, i.e. for x ∈ ∂N , f(x) 6∈ N or f−1(x) 6∈ N . The boundary of N
splits into two parts; ∂N = Mlat ∪Mint, where Mlat ⊂ ∂N ′ and Mint ⊂ intN ′.
If x ∈ Mlat, then since N ′ is an isolating block either f(x) or f−1(x) is not in N ′,
and therefore not in N . What remains to be shown is that the same holds for points
in Mint. Suppose not, then f(x), f−1(x) ∈ N . There exist grid elements G± ∈ S
such that f−1(x) ∈ G− and f(x) ∈ G+. The invariance of S now implies that
there exist orbits γ±

G± ⊂ S. Since x ∈ Mint and S is isolated in S ′, we can choose
H ∈ S ′\S which contains x.

Using the fact that F is an outer approximation now implies that f(x) ∈
f(H) ⊂ int |F(H)|, and consequently f(H) ∩ G+ 6= ∅ so that G+ ∈ F(H).
In same way one proves that G− ∈ F−1(H). We can now construct the following
complete orbit

γ−
G− ∪ {H} ∪ γ+

G+ ⊂ S ′

which does not lie in S, implying that S is not isolated with respect to S ′, a con-
tradiction.

The theoretical framework outlined in Sections 2-4 extends the ideas intro-
duced by Szymczak in [16]. Using implementations on Rn with rectangular grids
by software packages such as GAIO [6, 7], one can produce isolating blocks
(or more generally index pairs), index filtrations, and rigorous computer-assisted
proofs of specific dynamics, such as periodic or connecting orbits, in both finite
and infinite-dimensional maps, c.f. [16, 4, 5, 9].

5. Chain recurrence

In this section we continue our exposition for the case of a discrete dynamical
system generated by a surjective map f : X → X on a compact metric space, and
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for any grid G the multivalued map F will be the minimal multivalued map as in
Definition 2.3. In Section 7 we will state conditions which guarantee the results of
this section hold for more general dynamical systems and multivalued maps.

DEFINITION 5.1. Let {Gn}n∈N be any sequence of grids for which
diam(Gn) → 0 as n → ∞. The chain recurrent set for f is defined by
R(X, f) := ∩n|R(FGn)|.

Obviously, the first order of business is to prove that R(X, f) is well-defined.
We begin with a lemma which relates the multivalued maps on grids of different
diameters using only the continuity of f .

LEMMA 5.2. Let G be a grid with diameter diam(G). Then there exists a
δ = δ(diam(G)) > 0 such that if H is a grid with diam(H) < δ, then FH(H) ⊂
FG(G) for all G ∈ G and all H ∈ H with G ∩H 6= ∅. Moreover, if H ∈ R(FH)
and G ∩H 6= ∅, then G ∈ R(FG). Hence |R(FH)| ⊂ |R(FG)|.

PROOF. Since G has only finitely many elements, Proposition 2.5 implies that
there exists ε > 0 such that Bε(f(G)) ⊂ int(|FG(G)|) for all G ∈ G. Since f is
uniformly continuous on X , there exists ρ > 0 such that diam(G) < ρ implies
diam(f(G)) < ε/2. Choose δ > 0 such that δ < min{ρ, ε/2}. Let H be any
grid with diam(H) < δ. Let G ∈ G and H ∈ H with G ∩ H 6= ∅. Then
f(H) ⊂ Bε/2(f(G)) since diam(H) < ρ. Also, |FH(H)| ⊂ Bε(f(G)) since
diam(H) < ε/2. Therefore |FH(H)| ⊂ int(|FG(G)|).

If H ∈ R(FH), then there exists k > 0 such that H ∈ Fk
H(H). Note that

|Fk
H(H)| ⊂ int(|Fk

G(G)|) for all k > 0. Indeed, since |FH(H)| ⊂ int(|FG(G)|),
for any element K ∈ F(H) we have K ∩ int(G′) 6= ∅ for some G′ ∈ F(G)
which implies that |FH(K)| ⊂ int(|FG(G′)|) ⊂ int(|F2

G(G)|); hence |F2
H(H)| ⊂

int(|F2
G(G)|). Repeating this argument gives |Fk

H(H)| ⊂ int(|Fk
G(G)|) for all

k > 0. Now, we have H ⊂ int(|Fk
G(G)|). Since G ∩ H 6= ∅, we conclude

that G ⊂ Fk
G(G), i.e. G ∈ R(FG).

LEMMA 5.3. The set ∩n|R(FGn)| is independent of the particular sequence
{Gn}n∈N with diam(Gn) → 0. Hence, R(X, f) is well-defined.

PROOF. Suppose G is a fixed grid and {Hn}n∈N is a sequence of grids with
diam(Hn) → 0 as n → ∞. We first show that ∩n|R(FHn)| ⊂ |R(FG)|. Choose
n > 0 so that diam(Hn) < δ where δ > 0 is associated to G by Lemma 5.2.
Let y ∈ ∩n|R(FHn)|. Then there exists H ∈ Hn such that y ∈ H ∈ R(FHn).
Choose G ∈ G so that y ∈ G. By Lemma 5.2, we have G ∈ R(FG), and hence
y ∈ |R(FG)|.

Finally, suppose {Gm}m∈N and {Hn}n∈N are two sequences with
diam(Gm) → 0 and diam(Hn) → 0 as m,n → ∞. Above we showed that
∩n|R(FHn)| ⊂ |R(FGm)| for each m > 0. Hence ∩n|R(FHn)| ⊂ ∩m|R(FGm)|.
Interchanging the roles of Gm and Hn gives ∩n|R(FHn)| = ∩m|R(FGm)|. Hence
R(X, f) is well-defined.

Now we establish a basic lemma relating the orbits through points x under f

to the orbits of grid elements G 3 x under F . Here we will denote by γk,l
x the

orbit segment ϕ([k, l] ∩ T, x) for 0 ≤ k ≤ l < ∞. While the proof of this lemma
is a direct consequence of uniform continuity, we provide a proof here because it
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is used extensively in the sequel. We denote by h(A,B) the Hausdorff distance
between the sets A and B.

PROPOSITION 5.4. Let ε > 0, 0 6= n ∈ Z, and x ∈ X . Then there exists a
δ > 0 such that for any grid G with diam(G) < δ, we have |Fn(G)| ⊂ Bε(fn(G))
for all G ∈ G. Moreover, if x ∈ G and k, l ∈ Z with k ≤ l < 0 or 0 < k ≤ l then
h(γk,l

x , |Γk,l(G)|) → 0 as diam(G) → 0 where γk,l
x = ∪l

i=kf
i(x).

PROOF. Let δ0 = ε/2. First suppose n > 0. Since fn−1(G) is compact and
f is uniformly continuous, there exists δ1 > 0 such that f(Bδ1(f

n−1(G))) ⊂
Bδ0(f

n(G)). Furthermore, for each 1 < i < n there exists δi > 0 such
that f(Bδi

(fn−i(G))) ⊂ Bδi−1/2(fn−i+1(G)). Let δ := min0≤i≤n−1 δi/2. If
diam(G) < δ, then |F(G)| ⊂ Bδn−1(f(G)). For any H ∈ F(G), we have
f(H) ⊂ Bδn−2/2(f2(G)). Hence |F2(G)| ⊂ Bδn−2(f

2(G)). Repeating this argu-
ment for each i < n, we obtain |Fn(G)| ⊂ Bδ0(G) = Bε(fn(G)). When n < 0,
there exists δ1 > 0 such that f−1(Bδ1(f

−n+1(G))) ⊂ Bδ0(f
−n(G)), and the rest

of the arguments are analogous.
By uniform continuity of f , choose δ∗ > 0 such that fn(Bδ∗(x)) ⊂ Bε(fn(x))

for all k ≤ n ≤ l. Then for diam(G) < min{δ, δ∗} we have |Fn(G)| ⊂
Bε(fn(G)) ⊂ B2ε(fn(x)) for all k ≤ n ≤ l. The convergence of orbit segments
in the Hausdorff metric now follows.

One of the fundamental ideas in the proof of the decomposition theorem in Sec-
tion 6 is the relationship between the chain recurrent set and attractor-repeller pairs
in X , which we now prove. This also establishes that our definition of the chain
recurrent set yields the same set as the standard definition. First we need a propo-
sition that relates attractor-repeller pairs for the multivalued map F to attractor-
repeller pairs for f .

PROPOSITION 5.5. (i) For every attractor-repeller pair (A,A∗) for F , there
exists a unique attractor-repeller pair (A,A∗) for f such that A ⊂ |A| and A∗ ⊂
|A∗|.
(ii) Let (A,A∗) be an attractor-repeller pair for f . For every 0 < ε <
dist(A,A∗)/2, there exists δ > 0 such that if G is a grid with diam(G) < δ, then
there exists a unique attractor-repeller pair (A,A∗) for F with the property that
A ⊂ |A| ⊂ Bε(A) and A∗ ⊂ |A∗| ⊂ Bε(A∗). Any other attractor-repeller pair
(B,B∗) for F has the property that either |B| or |B∗| has nonempty intersection
with both Bε(A) and Bε(A∗).

PROOF. (i) Since F(A) = A, we have f(|A|) ⊂ int(|A|) so that |A| is an attract-
ing neighborhood. Then A = ω(|A|) ⊂ |A| is the maximal attractor in |A|, and
A∗ = Inv(cl(X \ |A|)) ⊂ | Inv(G \ A)| = |A∗|. Moreover, any other attractor
Â ⊂ |A| is not maximal, and hence Â∗ ∩ |A| 6= ∅ so that Â∗ 6⊂ |A∗|, which
implies uniqueness.
(ii) By the definition of attractor, there exists a neighborhood V ⊂ Bε(A) of A with
the property that f(V ) ⊂ V . Similarly, there exists a neighborhood V ∗ ⊂ Bε(A∗)
of A∗ such that f−1(V ∗) ⊂ V ∗. Since dist(A,A∗) > 2ε, we have V ∩ V ∗ = ∅.

By definition of an attractor-repeller pair and compactness, there exists N > 0
such that fN (x) ∈ V for all x ∈ X \ f−1(V ∗). Since V is open, Proposition
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5.4 provides δ > 0 such that if diam(G) < δ, then |FN (G)| ⊂ V for any G ⊂
X \ f−1(V ∗). Also, we can choose δ < h(V, f(V )).

Recall that for any set S ⊂ X we define cov(S) := {G ∈ G | S ∩ G 6= ∅}.
Let C = cov(f(V )). Since f(V ) ⊂ V and δ < h(V, f(V )), we have F(C) ⊂ C.
Now let A := ω(C) and A∗ its dual repeller. Since A ⊂ C, we have |A| ⊂ Bε(A).
Moreover, since f(A) = A, we have cov(A) ⊂ F(cov(A)), and hence cov(A) ⊂
Fk(cov(A)) for all k > 0. Thus cov(A) ⊂ ω(cov(A)) ⊂ ω(C) = A so that
A ⊂ |A|.

Suppose G is an element which does not intersect f−1(V ∗). Then by the above
construction, FN+1(G) ⊂ C so that A∗ does not contain G. Thus |A∗| ⊂ V ∗ ⊂
Bε(A∗). Moreover, A∗ ⊂ f−1(A∗) implies that cov(A∗) ⊂ F−1(cov(A∗)), and
hence cov(A∗) ⊂ F−k(cov(A∗)) for all k > 0. Thus cov(A∗) ⊂ α(cov(A∗)) ⊂
α(G \ C) = A∗ so that A∗ ⊂ |A∗|.

Suppose (B,B∗) is any other attractor-repeller pair for F . By Proposition 3.8,
all recurrent elements of G are in either A or A∗ and likewise in either B or B∗.
Therefore we must show that either B or B∗ contains recurrent elements from both
A and A∗ which will imply that either B or B∗ intersects the ε-neighborhoods of
both A and A∗.

First suppose thatA∩B 6= ∅ and B 6⊂ A. Then B contains a recurrent element
ofA, since otherwise it would not be invariant, and likewise B contains a recurrent
element from A∗ since B 6⊂ A. Conversely, if B ⊂ A or A ∩ B = ∅, then by
invariance, B∗ contains a recurrent element of A since A 6⊂ B. In the first case B∗
contains all of A∗, and in the latter case B ⊂ A∗ but B 6= A∗, and hence B∗ also
contains a recurrent element of A∗.

THEOREM 5.6. The chain recurrent set R(X, f) is the intersection of all
attractor-repeller pairs of (X, f).

PROOF. Let (A,A∗) be an attractor-repeller pair for f . Suppose {Gn} is a
sequence of grids with diam(Gn) → 0 as n → ∞. Let ε > 0. By Proposition
5.5, there exists N > 0 and an attractor-repeller pair (AN ,A∗N ) for FGN

such that
|AN ∪A∗N | ⊂ Bε(A∪A∗). By definition of an attractor-repeller pair |R(FGN

)| ⊂
|AN ∪ A∗N |, and thus R(X, f) = ∩n|R(FGn)| ⊂ Bε(A ∪ A∗). Since ε > 0 was
arbitrary, R(X, f) ⊂ A ∪ A∗ for every attractor-repeller pair; hence R(X, f) ⊂
∩(A ∪A∗).

Let x ∈ A ∪ A∗ for all attractor-repeller pairs and let G be any grid. Suppose
x /∈ |R(F)|. Choose G containing x, and let c = V (G) where V is a Lyapunov
function on G from Proposition 3.16. Then the sublevel and superlevel sets V c and
Vc contain an attractor A and its dual repeller A∗ respectively. Moreover, A and
A∗ do not contain G. Therefore, |A| and |A∗| contain an attractor A and its dual
repeller A∗ for which x 6∈ A ∪ A∗, which is a contradiction. Thus x ∈ |R(F)|.
Since G was an arbitrary grid, x ∈ R(X, f).

We now investigate how well grid recurrent sets approximate the chain re-
current set. From our definition, it is not a priori clear that grid recurrent sets
R(FGn) with diam(Gn) → 0 as n →∞ cannot have elements which are uniformly
bounded away from R(X, f) but nevertheless disappear in their intersection. Our
next lemma will show that this cannot happen.
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LEMMA 5.7. If Gn is any sequence of grids with diam(Gn) → 0 as n → ∞,
then h(|R(FGn)|,R(X, f)) → 0 as n →∞.

PROOF. Note that since FGn is closed, R(FGn) is nonempty, and since f is
surjective on X (compact), R(X, f) is also nonempty. Hence their Hausdorff dis-
tance is well-defined.

Since R(X, f) ⊂ |R(FGn)|, we have h(|R(FGn)|,R(X, f)) =
maxy∈|R(FGn )| dist(y,R(X, f)). Suppose that there exists α > 0 such that
h(|R(FGn)|,R(X, f)) ≥ α for infinitely many n > 0. Then one can choose a
sequence xn → x such that xn ∈ |R(FGn)| and dist(xn,R(X, f)) ≥ α. Thus
dist(x,R(X, f)) ≥ α, and hence x /∈ R(X, f).

Since x /∈ R(X, f), there must exist m > 0 such that x /∈ |R(FGm)|. In the
fixed grid Gm there must be an element G containing x and xn for infinitely many
n > 0. Since x /∈ |R(FGm)|, also G /∈ R(FGm). There exists N > 0 large enough
so that diam(GN ) < δ where δ > 0 is associated to Gm by Lemma 5.2. Since
xN ∈ HN ∈ R(FGN

) and G ∩HN 6= ∅, Lemma 5.2 implies that G ∈ R(FGm),
which is a contradiction. Thus h(|R(FGn)|,R(X, f)) → 0 as n →∞.

The above lemma shows that the chain recurrent set can be approximated arbitrarily
closely by grid recurrent sets by taking fine enough grids. For completeness we
show that this property holds for isolated invariant sets, which also yields a proof
that every isolating neighborhood N contains an isolating block for Inv(N).

THEOREM 5.8. Let N be an isolating neighborhood and S = Inv(N).
There exists δ > 0 such that if G is a grid on X with diam(G) < δ, then
S = Inv(cov(N)) is an isolated invariant set in G with S = Inv(|S|) ⊂ int(|S|).
Moreover, if diam(Gn) → 0 then h(|Sn|, S) → 0 as n →∞.

PROOF. Let N = cov(N). Let 0 < ε < dist(S, ∂N)/2 and M = N \Bε(S).
If x ∈ M , then for every complete orbit γx there exists nx ∈ Z such that γx(nx) /∈
N since x /∈ S. For nx > 0, by continuity there is rx > 0 such that fnx(Brx(x)) ⊂
N c. Since M is compact, n ∈ Z can be chosen so that |nx| ≤ n for every x ∈ M .
By Proposition 5.4, there exists 0 < δ < ε/4 such that if diam(G) < δ, then if
x ∈ M and x ∈ G we have dist(fnx(x), |Fnx(G)|) < ε/2 so that G /∈ Inv(N ).
A similar argument holds for nx < 0. Therefore |S| = | Inv(N )| ⊂ cl(Bε/4(S)).
Letting ε → 0 yields the Hausdorff convergence of |Sn| to S.

COROLLARY 5.9. Let N be an isolating neighborhood with S = Inv(N).
Then there exists a compact set B ⊂ int(N) which is an isolating block for S.

PROOF. By Theorem 4.4, B = |S| in Theorem 5.8 is an isolating block.

6. Lyapunov functions and Conley’s Decomposition Theorem

In Section 3 we introduced discrete Lyapunov functions for a multivalued map
F on a grid G which are naturally obtained from standard graph-theoretic algo-
rithms. In Section 5 we showed that the chain recurrent set of a map can be ap-
proximated by recurrent sets of multivalued maps on grids. However, if we con-
sider any sequence of grids Gn, with diam(Gn) → 0 as n →∞, then an associated
sequence of any such discrete Lyapunov functions need not have a limit. It is
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natural to ask whether the discrete Lyapunov functions on F can be chosen to con-
verge to a Lyapunov function for the original dynamical system. In this section we
construct specific discrete Lyapunov functions that have continuous limits, which
provides an independent proof of Conley’s Fundamental Decomposition Theorem.
We implement this construction for the example of the mulitivalued map defined in
Definition 2.3 in Section 2. Later we provide axioms under which this procedure
works for more general systems.

6.1. Discrete Lyapunov functions for attractor-repeller pairs. The con-
struction and convergence of discrete Lyapunov functions is performed in several
stages. We begin by constructing discrete Lyapunov functions for attractor-repeller
pairs which incorporate the topology of X (compact).

6.1.1. Distance potentials. Let A,B ⊂ X be compact subsets of X where the
intersection A ∩B need not be empty.

DEFINITION 6.1. A function v(A,B) : X\(A∩B) → [0, 1] is called a distance
potential for the pair (A,B) if :

(a) v(A,B) is locally Lipschitz continuous on X\(A ∩B),
(b) v−1

(A,B)(0) = A \B,

(c) v−1
(A,B)(1) = B \A.

If A ∩ B = ∅, then a distance potential is defined on all of X , and hence
Lipschitz continuous on X since the space X is compact. Distance potentials can
easily be constructed as the following example shows. For x ∈ X\(A∩B) define:

(2) v(A,B)(x) :=
d(x,A)

d(x, A) + d(x,B)
,

where the distance function d(·, ·) is derived from the metric on X . It is obvious
that if x ∈ A\(A ∩ B), or x ∈ B\(A ∩ B), then v(A,B) as defined in (2) is equal
to 0 or 1 respectively. As for the local Lipschitz continuity we have:

LEMMA 6.2. The function v(A,B) defined in (2) is locally Lipschitz continuous
on X\(A ∩ B). If A ∩ B = ∅, then v(A,B) is globally Lipschitz with Lipschitz
constant Lipv ≤ 1/d(A,B).

PROOF. To establish Lipschitz continuity, let x, y ∈ X\(A ∩B), then

v(A,B)(x)− v(A,B)(y) =
d(x,A)

d(x,A) + d(x,B)
− d(y, A)

d(y, A) + d(y, B)

=
d(x,A)d(y, B)− d(y, A)d(x,B)(

d(x, A) + d(x,B)
)(

d(y, A) + d(y, B)
) .

Using the inequality d(x, A) ≤ d(x, y) + d(y, A) for A, and the same for B, we
obtain

|v(A,B)(x)− v(A,B)(y)| ≤
d(x, y)

(
d(y, A) + d(y, B)

)
(
d(x,A) + d(x,B)

)(
d(y, A) + d(y, B)

)
≤ d(x, y)

d(x,A) + d(x,B)
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which proves local Lipschitz continuity.
As for the second part of the lemma we argue as follows. Since A and B are

compact sets in a compact metric space, when A ∩ B = ∅, they are separated,
and thus d(A,B) > 0. Using the inequality d(x,A) + d(x,B) ≥ d(A,B) > 0
we obtain that |v(A,B)(x) − v(A,B)(y)| ≤ d(x, y)/d(A,B), which proves global
Lipschitz continuity.

Other examples of distance potentials are found by slightly adjusting the ex-
ample given by (2):

v(A,B)(x) :=
d(x,A)n

d(x,A)n + d(x,B)n
, n ∈ N.

This is one among many possibilities for constructing distance potentials. The
advantage of the above formula is that for n > 1 the associated Lyapunov functions
in the continuous limit may display more smoothness.

6.1.2. Discrete Lyapunov functions for F . Let P = (A,A∗) be an attractor-
repeller pair for F , and let v|P| be any distance potential for the pair |P| =
(|A|, |A∗|). The sets |A| and |A∗| are not necessarily disjoint, but their interi-
ors are disjoint by construction. Therefore, the fact that v|P| may not be defined
in |A| ∩ |A∗| when the intersection is nonempty, does not affect the following
definition.

Choose representatives xG ∈ int(|G|) for all G ∈ G, and define the following
function on the graph F :

vP(G) := v|P|(xG).
For any k ≥ 0, let

v∗P(G, k) := max
H∈Γk

+(G)
vP(H).

This function is almost a Lyapunov function for the attractor-repeller pair decom-
position as the following lemma shows.

LEMMA 6.3. Let H ∈ Γn
+(G) for some n ≥ 1, then

v∗P(H, k) ≤ v∗P(G, k) ≤ v∗P(G, k + 1) for all k ≥ 0.

PROOF. Clearly, Γk
+(H) ⊂ Γk

+(G), and the first inequality follows from the
definition of v∗P . Since H ∈ Fn(G) for some n > 0, Γk

+(H) ⊂ Γk+1
+ (G) from

which the second inequality follows.

The above lemma shows that v∗P is a weak Lyapunov function in the sense that
it is not yet strictly decreasing off of the attractor-repeller pair. For this reason we
introduce the function

(3) VP(G) :=
∞∑

k=0

2−k−1v∗P(G, k).

It is immediately clear that the sum is convergent for all G ∈ G and VP(G) ∈ [0, 1]
for all G ∈ G.

LEMMA 6.4. For all H ∈ F(G) it holds that VP(G) ≥ VP(H) and VP(G) =
VP(H) if and only if G, H ∈ A or G, H ∈ A∗. In addition VP(A) = 0 and
VP(A∗) = 1.
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PROOF. The first statement of the lemma follows immediately from the defi-
nition of VP and Lemma 6.3. If both G and H lie in either A or A∗, then by the
definition of vP it follows that VP is equal to either 0 or 1 respectively.

Suppose that H and G are not both contained in either A or A∗. The definition
of A and A∗ then implies that G 6∈ A and H 6∈ A∗. We distinguish three cases.
The first case is when neither H nor G is contained in A ∪ A∗. Suppose that
VP(G) = VP(H). Lemma 6.3 yields that v∗P(H, k) ≤ v∗P(G, k) for all k ≥ 0,
and thus v∗P(H, k) = v∗P(G, k) for all k ≥ 0. Since G 6∈ A∗ it follows that
v∗P(G, k) → 0 as k → ∞. Indeed v∗P(G, k) = 0 for k ≥ k∗ for some k∗ > 0.
From Lemma 6.3 we get

0 = v∗P(G, k∗) ≥ v∗P(H, k∗ − 1)
= v∗P(G, k∗ − 1) ≥ 0,

which shows that v∗P(G, k∗ − 1) = 0, and therefore v∗P(G, k) = 0 for all k ≥ 0.
Consequently, VP(G) = VP(H) = 0. However, since G 6∈ A, VP(G) > 0, a
contradiction.

In the second case assume that G ∈ A∗. Suppose again that VP(G) = VP(H).
Then 1 = v∗P(G, k) = v∗P(H, k) → 0 as k → ∞ since H 6∈ A∗, a contradiction.
Therefore, 1 = VP(G) > VP(H).

Finally in the third case assume that H ∈ A. Again suppose that VP(G) =
VP(H). Then 0 = v∗P(G, k) = v∗P(H, k) for all k ≥ 0. However, v∗P(G, 0) > 0,
a contradiction. Therefore, 0 = VP(H) < VP(G). This completes the proof that
VP is a (strong) Lyapunov function.

6.1.3. Distance potentials and Lyapunov functions for Morse decompositions.
It is also possible to follow the philosophy of distance potentials directly on finer
Morse decompositions. This is not the approach we will take, so we only give a
rough idea how distance potentials generalize and how this leads to discrete Lya-
punov functions for Morse decompositions.

As an example, a distance potential on three sets A,B, C ⊂ X can be con-
structed by

v(A,B,C)(x) := α
d(x,A ∪B)

d(x,A ∪B) + d(x,C)
+ (1− α)

d(x,A)
d(x,A) + d(x,B ∪ C)

with α ∈ (0, 1). Here we assume the ordering C → B → A. Of course, the
properties of such a function can be put into a set of axioms as we did for distance
potentials for two sets. A discrete Lyapunov function can be constructed by the
previous procedure.

6.2. The limits of discrete Lyapunov functions for a single attractor-
repeller pair. We will now link the Lyapunov functions constructed above to
attractor-repeller pairs for the map f : X → X . The function VP induces a
piecewise constant function V|P| on X by

V|P|(x) = VP(G), for x ∈ |G|.

By construction V|P|(f(x)) ≤ V|P|(x), which implies that V|P| is a (discontinuous)
weak Lyapunov function. Notice that V|P|(x) is not well-defined on overlapping
boundaries of grid elements. For all of the constructions in this section, any rea-
sonable choice of values on these overlaps will work, for example we could choose
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V|P|(x) = maxG3x VP(G), but for particular applications different choices may
be more appropriate.

The next step is to consider any sequence of grids {Gn}with diam(Gn) → 0 as
n →∞, and obtain proper Lyapunov functions for attractor-repeller pairs (A,A∗)
for f . Associated with {Gn} is a sequence of multivalued maps {FGn}. For a given
attractor-repeller pair P = (A,A∗) for f Proposition 5.5 implies that there exist
attractor-repeller pairs Pn = (An,A∗n) for the graphs FGn whose realizations
converge to P = (A,A∗) as n →∞.

For the sequence of grids we have the distance potentials v|Pn| defined for
the attractor-repeller pairs (An,A∗n). Since (|An|, |A∗n|) → (A,A∗), and thus
|An| ∩ |A∗n| = ∅ (using A ∩ A∗ = ∅), for n sufficiently large, we conclude
v|Pn| → vP in C0(X), where vP is defined as before with respect to P = (A,A∗).

Before establishing the convergence of V|Pn| let us first consider Lyapunov
functions for attractor-repeller pairs for the map f : X → X .

6.2.1. Continuous Lyapunov functions. Define the functions

v∗P (x, k) := max
y∈γk

x

vP (y), k ≥ 0.

LEMMA 6.5. The functions v∗P (·, k) are continuous on X for all k. Moreover,
for each k, v∗P (·, k) is nonincreasing along orbits γx, and is nonincreasing in k,
i.e. v∗P (x, k) ≥ v∗P ((f(x), k), and v∗P (x, k) ≥ v∗P (x, k + 1).

PROOF. Clearly, v∗P (f(x), k) = v∗P (x, k + 1) ≤ v∗P (x, k), since γk+1
x ⊂ γk

x .
To prove continuity we argue as follows. Assume for the sake of simplicity

that k = 0, and write v∗P (x) = v∗P (x, 0). Indeed, v∗P (x, k) = v∗P (fk(x), 0), so
continuity only needs to be established at k = 0.

For x ∈ A∗ it holds that vP (x) = 1, and thus v∗P (x) = 1. If for any sequence
{xi}, with lim xi = x ∈ A∗, then clearly limv∗P (xi) = 1, proving continuity at
points x ∈ A∗. As for points x ∈ A we argue as follows. For each ε > 0 there
exists a neighborhood Uε ⊃ A, with f(Uε) ⊂ Uε, and h(Uε, A) < ε, and there
exists an N(ε) > 0 such that xi ∈ Uε for all i ≥ N(ε). By the Lipschitz continuity
of vP this immediately implies then that v∗P (xi) < Cε, proving that v∗P (xi) → 0
as i →∞.

For x ∈ X\(A ∪ A∗) it holds that vP (f i(x)) → 0 as i → ∞. Let Bδ(x)
be a closed neighborhood of x, then there exists a δ > 0, and an i0(x) such that
vP (f i(x′)) attains its maximum for i ∈ [0, i0(x)], for all x′ ∈ Bδ(x). This can
be seen as follows. Set d(x,A) = d1 > 0, and d(x,A∗) = d2 > 0, then for all
x′ ∈ Bδ(x) it holds that

vP (x′) ≥ m > 0

provided that δ ≤ 1
2 min (d1, d2). Let N ⊃ A be an isolating attracting set for A.

By choosing h(N,A) sufficiently small we obtain that

vP |N < m.

Clearly, there exists an i0(x) such that y = f i0(x)(x) ⊂ int(N). The map f i0 is
uniformly continuous, thus there exists an δε > 0 such that f i0(x′) ∈ Bε(y) for all
x′ ∈ Bδε(x). By choosing δ = min (δε, d1/2, d2/2) we derive that vP (Bδ(x)) >
vP (Bε(y)). Consequently, vP (f i(x′)) attains its maximum for i ∈ [0, i0(x)] for
all x′ ∈ Bδ(x).
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Define z(i, x) = vP (f i(x)), which is continuous in x, and for each ε > 0 there
exists a δε > 0 such d(x, x′) < δε implies that |z(i, x)− z(i, x′)| < ε uniformly in
i ∈ [0, i0(N)]. Thus,

−ε + z(i, x) < z(i, x′) < z(i, x) + ε.

We have v∗P (x) = z(i1, x) and v∗P (x′) = z(i2, x), i1, i2 ∈ [0, i0(N)]. Using the
above inequalities we derive that

v∗P (x) = z(i1, x)
< z(i1, x′) + ε ≤ z(i2, x′) + ε

= v∗P (x′) + ε.

Similarly v∗P (x′) < v∗P (x) + ε so that |v∗P (x)− v∗P (x′)| < ε.

For the map f the following function

(4) VP (x) =
∞∑

k=0

2−k−1v∗P (x, k),

is a Lyapunov function for the attractor-repeller pair P = (A,A∗), as was proved
by several authors in the case of homeomorphisms, cf. [2, 10, 15].

6.2.2. Limits of discrete Lyapunov functions. Let x ∈ Gn and introduce the
functions

v∗|Pn|(x, k) = max
y∈|Γk

+(Gn)|
v|Pn|(y), k ≥ 0.

The next lemma links the piecewise constant functions v∗|Pn|(x, k) to continuous
functions v∗P (x, k).

LEMMA 6.6. For each k ≥ 0, and ε > 0 there exists an N(ε, k) such that

|v∗|Pn|(x, k)− v∗P (x, k)| < ε, for n ≥ N(ε, k),

uniformly in x ∈ X .

PROOF. Choose compact neighborhoods Uε,k ⊃ A, and U∗
ε,k ⊃ A∗, with

h(A,Uε,k) < ε/(6Lipv) and h(A∗, U∗
ε,k) < ε/(6Lipv) such that, in addition,

0 ≤ vP (f i(x)) ≤ ε/6, for all x ∈ Uε,k, and

1− ε/6 ≤ vP (f i(x)) ≤ 1, for all x ∈ U∗
ε,k,

for all 0 ≤ i ≤ k. Define Dε,k = cl(X\(Uε,k ∪ U∗
ε,k)). From the proof of Lemma

6.5 we obtain a constant k∗ ≥ k such that vP(f i(x)) attains its maximum in i on
the on the interval [k, k∗], for all x ∈ Dε,k. Consequently, for x ∈ Dε,k we have
that

v∗P (x, k) = max
y∈γk,k∗

x

vP (y).

Moreover choose Gn 3 x and define

W (x, k) := max
y∈|Γk,k∗ (Gn)|

vP (y).

By Proposition 5.4 we have that |Γk,k∗(Gn)| → γk,k∗
x in the Hausdorff metric,

as n → ∞. Since vP is Lipschitz continuous it follows that |vP (x) − vP (x′)| ≤
Cd(x, x′). By choosing δε = ε/(3Lipv) it then holds that |vP (x)−vP (x′)| < ε/3,
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for all x, x′, for which d(x, x′) < δε. Consequently, there exists an N ′(ε, k) such
that h(|Γk,k∗(Gn)|, γk,k∗

x ) < δε for all n ≥ N ′(ε, k). As a direct consequence it
holds that |W (x, k) − v∗P (x, k)| < ε/3 for each x ∈ Dε,k. By construction, the
same estimate holds for x ∈ Uε,k ∪ U∗

ε,k. and thus |W (x, k) − v∗P (x, k)| < ε/3,
for n ≥ N ′(ε, k), and for all x ∈ X .

From Proposition 5.5 it follows that |An| ∩ |A∗n| = ∅, provided that n is
sufficiently large. Therefore, for n sufficiently large the distance potential v|Pn| is
a Lipschitz continuous function on X . Let Gn ∈ A∗n, then by definition Γk

+(Gn)∩
A∗n 6= ∅. As a consequence v∗|Pn|(x, k) = 1 for x ∈ |A∗n|, and similarly
Γk

+(Gn) ∩ An ⊂ An implies v∗|Pn|(x, k) = 0 for x ∈ |An|.
Consider the complement Yn = Gn\(An ∪ A∗n), and set Y n = |Yn|. From

continuity it now follows that for each n, there exists a kn, such that fkn(x) ∈ |An|,
for all x ∈ Y n. This implies that (for k ≤ kn)

v∗|Pn|(x, k) = max
y∈|Γk,kn (Gn)|

v|Pn|(y),

for all x ∈ X . For k > kn it holds that v∗|Pn|(x, k) is equal to either 0 or 1. Let
x ∈ Gn, with Gn ∈ Yn (and thus x ∈ Y n), and define the function

W̃ (x, k) := max
y∈|Γk,kn (Gn)|

vP (y).

Since v|Pn| → vP in C0(X) , as n →∞ it follows that for each ε > 0, there exists
a N ′′(ε, k) such that that |W̃ (x, k) − v∗|Pn|(x, k)| < ε/3, uniformly in x ∈ X ,
provided that n ≥ N ′′(ε, k) > 0.

If n is chosen large enough then Dε,k ⊂ Y n. This we can include into the
choice of N ′′(ε, k). Consequently, h(Dε,k, Y

n) < ε/(6Lipv), which yields that

|W̃ (x, k)−W (x, k)| < ε/3,

for n ≥ N ′′(ε, k) > 0, uniformly in x ∈ X . Indeed, since h(A,Uε,k) < ε/(6Lipv)
and h(A∗, U∗

ε,k) < ε/(6Lipv), we can compare the function v|Pn| outside A and
A∗. Using the Lipschitz continuity it then follows that |v|Pn|(x)− v|Pn|(y)| ≤ 2 ·
Lipvd(x, y) < ε/3 for any pair x, y ∈ Uε,k\A. The same holds for x, y ∈ U∗

ε,k\A∗.

The estimate on W and W̃ now follows. From the inequality

|v∗|Pn|(x, k)− v∗P (x, k)| ≤

|v∗|Pn|(x, k)− W̃ (x, k)|+ |W̃ (x, k)−W (x, k)|+ |W (x, k)− v∗P (x, k)|.

We deduce that |v∗|Pn|(x, k) − v∗P (x, k)| < ε for all n ≥
max(N ′(ε, k), N ′′(ε, k)) = N(ε, k), uniformly in x ∈ X , which proves the
lemma.

By Lemma 6.6 it follows that for each ε > 0 and k ≥ 0 there exists a N(ε, k)
such that |v∗|Pn|(x, k) − v∗P (x, k)| < ε, for n ≥ N(ε, k), uniformly in x ∈ X .
Choose M(ε) such that

∑∞
k=M+1 2−k−1 < ε, for M ≥ M(ε). Define N∗(ε) =

maxk≤M(ε) N(ε, k), then |v∗|Pn|(x, k)− v∗(x, k)| < ε, for all n ≥ N∗(ε), and for
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all k ≤ M(ε). Consequently,

∣∣∣M(ε)∑
k=0

2−k−1v∗|Pn|(x, k)−
M(ε)∑
k=0

2−k−1v∗P (x, k)
∣∣∣

≤
M(ε)∑
k=0

2−k−1ε < (1− ε)ε < ε,

for all n ≥ N∗(ε), uniformly in x ∈ X . The same bound can be achieved
for k ranging from M(ε) + 1 to ∞ due to the choice of M(ε). Therefore,∑∞

k=0 2−k−1v∗|Pn|(x, k) →
∑∞

k=0 2−k−1v∗P (x, k) = VP (x) uniformly in x ∈ X

as n → ∞. Finally, we need to link v∗|Pn|(x, k) to v∗Pn(Gn, k). A straightforward
comparison shows that

|v∗|Pn|(x, k)− v∗Pn(Gn, k)| ≤ εLipv.

Consequently, ∣∣∣ K∑
k=0

2−k−1v∗|Pn|(x, k)−
K∑

k=0

2−k−1v∗Pn(Gn, k)
∣∣∣

≤
K∑

k=0

2−k−1εLipv < εLipv,

for all K > 0, and thus |V|Pn|(x) − VP (x)| < ε(2 + Lipv), which concludes our
construction. The result can be summarized as follows.

THEOREM 6.7. Given an attractor-repeller pair P = (A,A∗) and a sequence
of grids {Gn} with diam(Gn) → 0. Then there exists a sequence of attractor-
repeller pairs Pn = (An,A∗n), with h(|Pn|, P ) → 0, as n →∞, and associated
piecewise constant Lyapunov functions V|Pn|, coming from the (discrete) Lyapunov
functions VPn , such that V|Pn| converges uniformly on x ∈ X to the (continuous)
Lyapunov function VP , as n →∞ defined by (4).

REMARK 6.8. In Equations (3) and (4) the discrete and continuous Lyapunov
functions are defined via sequence of weights that guarantee convergence of the
series. There is of course freedom in choosing these weights as long as they satisfy
the appropriate convergence criteria. In some instances it may be preferable to
choose different weight factors.

6.3. Lyapunov functions for Morse decompositions and the chain-
recurrent set. In the previous subsection, it is shown that Lyapunov functions for
attractor-repeller pairs for f can be obtained as limits of piecewise constant Lya-
punov functions on a sequence of grids. The final step in this section is to establish
this result also for Morse decompositions and the chain-recurrent set R(X, f).

From Theorem 5.6 we have that the chain recurrent set of f is given by
R(X, f) =

⋂
i∈N(Ai, A

∗
i ), where {(Ai, A

∗
i )}i∈N is the collection of all attractor-

repeller pairs for (X, f). As before we denote the attractor-repeller pairs by
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Pi = (Ai, A
∗
i ). The function

(5) V (x) = 2
∞∑
i=1

3−iVPi(x),

where VPi are the Lyapunov functions defined in (4) for the attractor-repeller pairs
Pi = (Ai, A

∗
i ), is a proper Lyapunov function for (X, f) with values in [0, 1].

The function V defined in (5) now establishes Conley’s Decomposition Theorem
as explained at the end of this section. However, such a Lyapunov function can
be defined in many ways. First by choosing the ordering of the attractor repeller-
pairs, and second by a variation in the weight factors. This leads to uncountably
many different Lyapunov functions for the chain-recurrent set. In this section we
also show that such choices can be made in a way that allows approximation by
piecewise constant Lyapunov functions on a sequence of grids.

The ordering of the attractor-repeller pairs can also be arranged simply by re-
ordering the weight factors. Let a = {αi}∞i=1 be a sequence of weight factors with∑∞

i=1 αi = 1, then define

(6) Va(x) =
∞∑
i=1

αiVPi(x).

It is immediately clear from this definition that Va is a function that maps onto
[0, 1]. If all weight factors are positive then Va is a strong Lyapunov function due
to the fact that VPi are Lyapunov functions.

6.3.1. Lyapunov functions for Morse decompositions. A Morse decomposi-
tion M can be found as a finite intersection of attractor-repeller pairs, i.e. M =
∩`

k=1(Aik ∪A∗
ik

). By choosing weights βk, with
∑

k βk = 1, the function

(7) VM (x) =
∑̀
k=1

βkVPik
(x),

becomes a Lyapunov function for M . We should point out that VM is a special
case of a Lyapunov function of the type defined in equation (6) by setting

αi =

{
βk, i = ik,

0, i 6= ik.

From Theorem 6.7 we obtain attractor-repeller pairs |Pn
ik
| → Pik and piecewise

constant Lyapunov functions V|Pn
ik
| → VPik

. To be more precise, for each ε > 0
there exists a N(ε, ik), such that |V|Pn

ik
|(x)− VPik

(x)| < ε. For the graph FGn we
define the Lyapunov functions

Vn
M (Gn) =

∑̀
k=1

βkVPn
ik

(Gn),

and the associated piecewise constant functions V n
M (x) = Vn

M (Gn) for all x ∈ Gn.
By setting L(ε) = max1≤k≤` N(ε, ik) we obtain that |V n

M (x) − VM (x)| < ε for
all n ≥ L(ε), which yields a convergence result for Lyapunov functions for Morse
decompositions.
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THEOREM 6.9. Given a Morse decomposition M for (X, f) and sequence
of grids Gn, with diam(Gn) → 0, as n → ∞. Then for any Lyapunov func-
tion VM for M defined in (7), there exists piecewise constant functions V n

M ,
coming from Lyapunov functions Vn

M for the associated Morse decompositions
M = ∩`

k=1(An
ik
∪ A∗ik

n) for FGn , such V n
M → VM , uniformly in x ∈ X , as

n →∞.

6.3.2. Convergence to Lyapunov functions on the chain-recurrent set. Our
next step is to construct discrete Lyapunov functions that converge to a Lyapunov
function for the chain-recurrent R(X, f). This can be done by constructing se-
quences of Lyapunov functions for the Morse decompositions Mk = ∩k

i=1(Ai ∪
A∗

i ). We start by approximating Va, for a given weight sequence a = {αi}. For the
Morse decomposition Mk we define βk

i = αi/σk, where σk =
∑k

i=1 αi < 1. Set
VMk

(x) =
∑k

i=1 βk
i VPi(x), then

|VMk
(x)− Va(x)| =

∣∣∣ k∑
i=1

(βk
i − αi)VPi(x)−

∞∑
i=k+1

αiVPi(x)
∣∣∣

=
∣∣∣ k∑
i=1

αi

( 1
σk
− 1

)
VPi(x)−

∞∑
i=k+1

αiVPi(x)
∣∣∣

≤
( 1

σk
− 1

) k∑
i=1

αi +
∞∑

i=k+1

αi

≤ (1− σk) +
∞∑

i=k+1

αi.

Consequently, for each ε > 0, there exists a K(ε) > 0 such that |VMk
(x) −

Va(x)| < ε for all k ≥ K(ε), uniformly in x ∈ X . From Subsection 6.3.1,
|V n

Mk
(x) − VMk

(x)| < ε for n ≥ L(ε,Mk) for Morse decompositions. Now for
each ε > 0 there exists an N ′(ε) = L(ε/3,MK(ε/3)) such that for all k ≥ K(ε/3)
and n ≥ N ′(ε) it holds that

|V n
Mn

(x)− Va(x)| ≤ |V n
Mn

(x)− V n
Mk

(x)|+
|V n

Mk
(x)− VMk

(x)|+ |VMk
(x)− Va(x)|

≤ |V n
Mn

(x)− V n
Mk

(x)|+ 2ε/3.

The remaining term can be estimated as follows. Recall that V n
Mk

(x) =
σ−1

k

∑k
i=1 αiV|Pn

i |(x), where the attractor-repeller pairs are chosen such that
Pn

i → P for all i, as n →∞. Fix k, n > N , then

|V n
Mn

(x)− V n
Mk

(x)| ≤
∣∣∣ 1
σn

− 1
σk

∣∣∣ N∑
i=1

αiV|Pn
i |(x)

+
1
σk

k∑
i=N+1

αi +
1
σn

n∑
i=N+1

αi.
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Consequently, by choosing n ≥ N ′(ε) large enough, it holds that the latter can
be estimated by ε/3. By setting N(ε) = max(N ′(ε), N ′′(ε)) we obtain that
|V n

Mn
(x)− Va(x)| < ε for all n ≥ N(ε), uniformly in x ∈ X .

We have constructed discrete Lyapunov functions Vn
Mn

for Morse decomposi-
tions Mn for which the piecewise constant realizations V n

Mn
converge to Va. The

final step is to find a sequence of Lyapunov functions for the chain-recurrent sets
R(FGn). Define the function

V n
a (x) =

1
ρn

pn∑
i=1

αiV|Pn
i |(x)

=
σn

ρn
V n

Mn
(x) +

1
ρn

∑
i>n

αiV|Pn
i |(x),

where ρn =
∑pn

i=1 αi, and pn is the total number of attractor-repeller pairs for each
n. By definition σn ≤ σn

ρn
≤ 1, and σn → 1 as n →∞. Therefore,

|V n
a (x)− V n

Mn
(x)| ≤

(
1− σn

ρn

) n∑
j=1

αi +
1
ρn

(1− σn) < ε,

provided n is large enough. These arguments prove the following theorem.

THEOREM 6.10. Let {Gn} be any sequence of grids with diam(Gn) → 0, as
n →∞, and let the functions {V n

a } and Va be as introduced above. Then

V n
a −→ Va uniformly in x ∈ X

as n →∞.

In the above considerations we choose a as a fixed ‘index’. We can also allow
sequences an with the property that an → a uniformly as n → ∞. The statement
of Theorem 6.10 then becomes V n

an → Va uniformly in x ∈ X as n →∞.
6.3.3. Conley’s Fundamental Decomposition Theorem. The above construc-

tions provide discrete Lyapunov functions for R(Gn) which converge to a Lya-
punov function for R(X, f). The properties of these Lyapunov functions are sum-
marized in Theorem 6.12 below, which establishes Conley’s Fundamental Decom-
position Theorem.

The following definition is equivalent to the one given in the introduction.

DEFINITION 6.11. The chain components of R(X, f) are the equivalence
classes of the relation x ∼ y if for every ε > 0 there exists a grid G with diam(G) <
ε containing elements G, H such that x ∈ G, y ∈ H, and G ∼ H in R(G).

THEOREM 6.12 (Conley’s Fundamental Decomposition Theorem). Let f :
X → X be a continuous map on a compact metric space. Then there are at
most countably many chain components {Ri}i∈J of R(X, f) and there exists a
continuous function V : X → [0, 1] such that

(1) if x /∈ R(X, f), then V (x) > V (f(x)), and
(2) for each i ∈ J there exists σi ∈ [0, 1] such that Ri ⊂ V −1(σi).

Moreover, if Gn is a sequence of grids with diam(Gn) → 0 as n → ∞, then there
exist Lyapunov functions V n for the multivalued map on Gn which are constant on
grid elements such that V n → V as n →∞ uniformly on X .
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6.4. Explicit constructions for the chain-recurrent set. In the previous sub-
section we established the convergence of Lyapunov functions for Morse decom-
positions and for the chain recurrent set. In particular, Theorem 6.10 states that
any given Lyapunov function Va can be approximated by piecewise constant ap-
proximations V n

a which come from discrete Lyapunov functions Vn
a on the grid

Gn.
In this subsection we address this convergence from a constructive point of

view, i.e. given the Lyapunov functions Vn
a for R(FGn), under what conditions do

they do they converge to a Lyapunov function forR(X, f)? We outline a construc-
tive way to answer this question and thus provide an algorithm for constructing
approximations for Lyapunov functions for R(X, f).

Let Gn be a sequence of grids with diam(Gn) → 0 as n → ∞. Propo-
sition 5.5 establishes the following one-to-one correspondence between certain
attractor-repeller pairs for f and attractor-repeller pairs for F . Let Pc = {P =
(A,A∗) | dist(A,A∗) ≥ c} and for F define Πc = {P = (A,A∗) | ω(|A|) =
A and (A,A∗) ∈ Pc}. Since Pc is a finite set, Proposition 5.5 implies that there
exists N ≥ 0 such that for any n ≥ N , there is a one-to-one correspondence be-
tween Pc and Πn

c for Fn. Moreover, given any 0 < ρ < c/2, the number N can
be chosen such that h(|P|, P ) < ρ for corresponding pairs. Applying Theorem
6.7 to the elements of Pc, we obtain the convergence of corresponding Lyapunov
functions.

Thus, we will impose an ordering on attractor-repeller pairs by the distance
between the attractor and repeller. In particular, the ordering {Pi}p

i=1 (where
p could be ∞) of all attractor-repeller pairs is admissible if dist(Ai, A

∗
i ) ≥

dist(Ai+1, A
∗
i+1) for all i > 0 with a similar definition for attractor-repeller pairs

for F . The above ideas lead to the following theorem.

THEOREM 6.13. Let Gn be a sequence of grids with diam(Gn) → 0 as
n → ∞, and let {Pn

i }
pn

i=1 be admissible labelings of the attractor-repeller pairs
for FGn , for each n. Given a (positive) sequence a = {αi} with

∑
i αi = 1, there

exist piecewise constant Lyapunov functions V n
a coming from discrete Lyapunov

functions for FGn such that for every ε > 0 there exists N(ε) and (continuous)
Lyapunov functions Van for f with

|V n
a (x)− Van(x)| < ε

uniformly for all x ∈ X and all n ≥ N(ε). Moreover, the piecewise constant
functions V n

a are weak Lyapunov functions for f , i.e. V n
a (f(x)) ≤ V n

a (x) for all
x ∈ X and all n > 0.

PROOF. We will consider three separate cases. First we will assume that
there are infinitely many distinct attractor-repeller pairs and dist(Ai, A

∗
i ) >

dist(Ai+1, A
∗
i+1) for all i > 0 in which case an = a is constant. The case where

some pairs have the same distance between attractor and repeller requires a possi-
ble rearrangement of a for each n and is a technical modification of the argument
below. Finally, the third case of finitely many attractor-repeller pairs is addressed.

Case 1: Assume there are infinitely many attractor-repeller pairs and the distances
between attractors and repellers are all distinct.
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Let ε > 0. Choose L(ε) such that
∑∞

j=L(ε) αi < ε/4. Let c =
dist(AL(ε), A

∗
L(ε)). Then Pc = {P1, . . . , PL(ε)}. Define ri = (dist(Ai, A

∗
i ) −

dist(Ai+1, A
∗
i+1))/2 for i = 1, . . . , L(ε) and r = min1≤i≤L(ε) ri. Choose ρ <

min{ε, c/2, r/2}.
Now let {Pi}pn

i=1 (where pn < ∞) be an ordering of the set of attractor-repeller
pairs of Fn satisfying the condition dist(|Ai|, |A∗i |) ≥ dist(|Ai+1|, |A∗i+1|) for all
i > 0. Choose N > 0 such that for all n ≥ N each attractor-repeller pair Pi ∈ Pc

has a unique corresponding attractor-repeller pair Qn
i for which h(|Qn

i |, Pi) < ρ
by Proposition 5.5. Observe that since A ⊂ |An

i | ⊂ Bρ(A) and A∗ ⊂ |A∗ni | ⊂
Bρ(A∗), we have dist(Ai, A

∗
i )− 2ρ < dist(|An

i |, |A∗ni |) < dist(Ai, A
∗
i ) so that

dist(|An
i |, |A∗ni |) > dist(Ai, A

∗)− 2ri

> dist(Ai+1, A
∗
i+1) > dist(|An

i+1|, |A∗ni+1|)

by the choices of ri and ρ. Therefore {Qn
i } respects the ordering by distance

between the attractor and repeller so that Qn
i = Pn

i for all i = 1, . . . , L(ε), which
also implies pn ≥ L(ε).

Furthermore, if Qn is any attractor-repeller pair for which dist(|An|,A∗n|) >
c − 2ρ, then the corresponding attractor-repeller pair for f from part (i) of Propo-
sition 5.5 satisfies dist(A,A∗) ≥ c and hence Qn = Pn

i for some 1 ≤ i ≤ L(ε).
Therefore dist(|An

i |, |A∗ni |) < c for all attractor-repeller pairs Pn
i with i > L(ε).

Using the same notation as in the previous subsection, define

Va(x) =
∞∑
i=1

αiVPi(x) V
L(ε)

a (x) =
L(ε)∑
i=1

αiVPi(x)

and

V n
a (x) =

1
ρn

pn∑
i=1

αiV|Pn
i |(x) V

n,L(ε)
a (x) =

1
ρn

L(ε)∑
i=1

αiV|Pn
i |(x).

We estimate |Va(x)− V n
a (x)| by

|Va(x)− V n
a (x)| ≤ |Va(x)− V

L(ε)
a (x)|+ |V L(ε)

a (x)− V
n,L(ε)

a (x)|

+|V n,L(ε)
a (x)− V n

a (x)|
< ε/4 + ε/4 + 2ε/4 < ε.

The first and third terms are estimated by

|Va(x)− V
L(ε)

a (x)| ≤
∞∑

i=L(ε)+1

αiVPi(x) < ε/4

and

|V n,L(ε)
a (x)− V n

a (x)| ≤ 1
ρn

pn∑
i=L(ε)+1

αiV|Pn
i | ≤ 2

∞∑
i=L(ε)+1

αi < 2ε/4

since ρn > 1 − ε/4 > 1/2 for ε < 2. To estimate the middle term we apply
Theorem 6.7 to choose N large enough so that |VPi(x)−V|Pn

i
(x)| ≤ ε/8 uniformly
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in x for all 1 ≤ i ≤ L(ε) and 1− 1/ρn < ε/8. Then,

|V L(ε)
a (x)− V

n,L(ε)
a (x)| ≤

L(ε)∑
i=1

αi|VPi −
1
ρn

V|Pn
i ||

≤
L(ε)∑
i=1

αi|VPi − V|Pn
i ||+

(
1− 1

ρn

) L(ε)∑
i=1

αi < ε/4.

This completes Case 1.

Case 2: Assume that there are infinitely many attractor-repeller pairs and
dist(Ai, A

∗
i ) = dist(Ai+1, A

∗
i+1) for some values of 1 ≤ i < ∞.

Note that for any given value of dist(Ai, A
∗
i ) there are only finitely many

attractor-repeller pairs which attain this distance. The argument proceeds as in
Case 1 with the following modifications.

Choose L(ε) as in Case 1 with the additional constraint that
dist(AL(ε), A

∗
L(ε)) > dist(AL(ε)+1, A

∗
L(ε)+1). The distances associated to

the attractor-repeller pairs Qn
i respect the gaps in distances associated to Pi but it

need not happen thatQn
i = Pn

i for all 1 ≤ i ≤ L(ε). However, as sets Πn
c = {Qn

i }
so that any attractor-repeller pairQn for which dist(|An|,A∗n|) > c− 2ρ satisfies
Qn = Pn

i for some 1 ≤ i ≤ L(ε).
In terms of Lyapunov functions, for each n ≥ N there is a rearrangement an

of a such that the same estimates hold for |Van(x)−V n
a (x)| as for |Va(x)−V n

a (x)|
in Case 1.

Case 3: Assume there are finitely many attractor-repeller pairs with admissible
ordering {Pi}p

i=1.

Let ε > 0. Let {Pn
i } be an admissible ordering of the attractor-repeller pairs

for Fn. Choose ρ < min{ε,dist(Ap, A
∗
p)/2}. By Proposition 5.5 there exists N >

0 such that for all n ≥ N , each Pi has a unique corresponding attractor-repeller
pair Qn

i such that h(|Qn
i |, Pi) < ρ. Moreover, given any attractor-repeller pair Qn

the maximal attractor ω(|An|) in |An| must be Aj for some 1 ≤ j ≤ p. Therefore,
by Proposition 5.5, Qn = Qn

j or either |An| intersects Bρ(A∗
j ) or |A∗n| intersects

Bρ(Aj), which implies dist(|An|, |A∗n|) < ρ. Therefore we can conclude that

(8) dist(|An
i |, |A∗ni |) →

{
dist(Ai, A

∗
i ) for 1 ≤ i ≤ p

0 for i > p

as n →∞ uniformly in i.
In this case we need to adjust our definition of the Lyapunov functions to obtain

convergence. First we consider the sequence â given by α̂i = Diαi > 0 where
Di = di/

∑p
j=1 djαj and di = dist(Ai, A

∗
i ) for 1 ≤ i ≤ p and α̂i = 0 for

i > p (the number of attractor-repeller pairs for f). Likewise the (nonnegative)
sequences ân are defined by α̂n,i = Dn

i αn,i where Dn
i = δn

i /
∑pn

j=1 δn
j αj and

δn
i = dist(|An

i |, |A∗ni |) for 1 ≤ i ≤ pn and α̂n,i = 0 for i > pn. Note that∑
i α̂i =

∑
i α̂n,i = 1 for each n > 0. The functions Vba and V nba are now defined
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by

Vba(x) =
∞∑
i=1

α̂iVPi(x) = V pba (x) =
p∑

i=1

α̂iVPi(x)

and

V nban
(x) =

pn∑
i=1

α̂n,iV|Pn
i |(x) V n,pban

(x) =
p∑

i=1

α̂n,iV|Pn
i |(x).

By Theorem 6.7 and (8), we have V n,pban
(x) → Vba(x) uniformly as n →∞ (up

to possible rearrangement if some of the distances between attractor and repeller
are equal for pairs for f ). Also since the convergence in (8) is uniform in i, we
have V nban

(x) − V n,pban
(x) → 0 as n → ∞ uniformly in x. Therefore, we have

V nban
(x) → Vba(x) as n →∞ uniformly in x. This completes the proof of Case 3.

REMARK 6.14. Theorem 6.13 shows that discrete, weak Lyapunov functions
can be constructed which approximate a continuous Lyapunov function arbitrarily
closely. For a fixed grid the approximation is based only on information obtained
from the multivalued map without any a priori information about the true dynam-
ics of the system, and hence this construction can be implemented computation-
ally. However, as the grid size changes, the “limiting” Lyapunov function can also
change due to possible rearrangement of the order of attractor-repeller pairs. It
may appear from the proof of Theorem 6.13 that the construction requires a priori
knowledge about whether the number of attractor-repeller pairs of f is finite or
infinite. In fact, if the distances between attractor and repeller are included in the
weights which determine the Lyapunov functions as in the finite case, convergence
is also obtained in the infinite case. The development of efficient algorithms for
computing approximate Lyapunov functions is the subject of ongoing research and
will be addressed in a future work.

7. Generalizations

For the sake of clarity, the theory presented in the previous sections was re-
stricted to compact metric spaces. However, for a wide variety of applications
the dynamical systems of interest are generated by differential equations or maps
defined on Rm. In this section we extend the theory to this more general setting.

7.1. Locally compact spaces. Throughout this subsection X denotes a lo-
cally compact, separable metric space, and f is a continuous map on X . From
Theorem 2.2 we obtain the existence of a grid G with diam(G) = ε. For a finite
subset Y ⊂ G, the objective is to define an appropriate multivalued map on Y that
has the right properties with respect to the underlying dynamics of f on the com-
pact region |Y|. The most significant change is that we now allow the empty set to
be in the range of the multivalued map F on Y .

From an algorithmic point of view, empty images in the multivalued map pose
no additional complications. The graph-theoretic algorithms to compute, for exam-
ple, the recurrent set R(F) do not change; any invariant sets resulting from such
computations will naturally lie in the maximal closed subgraph, i.e. the maximal
invariant set of Y . The only difficulty is a technical issue arising from the possi-
bility that the maximal invariant set of the topological map f could intersect the
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boundary of |Y|, and we now present the appropriate modifications of the theory
to address this issue.

DEFINITION 7.1. A multivalued map F : Y −→→Y is an outer approximation
on |Y| of f if the following conditions are satisfied:

(a) f(G) ∩ |Y| ⊂ int|Y|
(∣∣F(G)

∣∣), for all G ∈ Y ,
(b) f−1(G) ∩ |Y| ⊂ int|Y|

(∣∣F−1(G)
∣∣), for all G ∈ Y .

Since we are reducing our calculations to a subset of X we need to understand
when isolation in the reduced combinatorial system F|Y leads to isolation for f :
X → X .

DEFINITION 7.2. An invariant set S is isolated in Y if S = Inv({G ∈ Y |G∩
|S| 6= ∅}).

PROPOSITION 7.3. Let F : Y −→→Y be an outer approximation on |Y| of f . Let
S be an isolated invariant set in Y . If {G ∈ G | G ∩ |S| 6= ∅} ⊂ Y then N = |S|
is an isolating block for Inv(N, f).

PROOF. We start by proving that N = |S| is an isolating block. For this we
adjust the proof of Theorem 4.4, arguing by contradiction. Assume there exists
a point x ∈ ∂N such that f(x) ∈ N and f−1(x) ∩ N 6= ∅. There exist grid
elements G± ∈ S such that f−1(x) ∩G− 6= ∅ and f(x) ∈ G+. The invariance of
S now implies that there exist complete orbits γG± ⊂ S. By assumption, H ∈ Y
whenever x ∈ H ∈ G. Moreover, since S is isolated in Y , there exists H ∈ Y \ S
such that x ∈ H .

Using the fact that F is an outer approximation now implies that f(x) ∈
f(H) ∩ |Y| ⊂ int|Y| |F(H)|, and consequently {G | f(H) ∩ |Y| ∩ G 6= ∅} ⊂
F(H). This then implies that G+ ∈ F(H). In same way one proves that
G− ∈ F−1(H). We can now construct the following complete orbit

γ−
G− ∪ {H} ∪ γ+

G+ ⊂ Y,

which does not lie in S, implying that S is not isolated in Y , a contradiction.

EXAMPLE 7.4. Let f : Rm → Rm be a continuous map. The following
collection G is a grid for Rm;

G :=

{
m∏

i=1

[
ji

2
,
ji + 1

2

] ∣∣∣ ji ∈ Z

}
.

Let Y be a compact neighborhood in Rm, and set Y = {G ∈ G | G ∩ Y 6= ∅}.
Define F : Y −→→Y by F(G) := {H ∈ Y | H ∩ f(G) 6= ∅}. The multivalued
map F is an outer approximation of f on Rm. To see why this is the case, define
T : Y −→→G by T (G) := {H ∈ G | H ∩ f(G) 6= ∅}. By Proposition 2.5 for each
G ∈ G, f(G) ⊂ int(|T (G)|). Since int|Y|(|F(G)|) = int(|T (G)|) ∩ |Y|, then
Definition 7.1(a) is satisfied. A similar argument shows that Definition 7.1(b) is
also satisfied.
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7.2. Convergence. For clarity of presentation, the main results of Sections 5
and 6 on the convergence of the grid recurrent set to the chain recurrent set and the
convergence of Lyapunov functions were developed for the minimal combinatorial
multivalued map associated to a topological map. Here we briefly state a conver-
gence criterion for other outer approximations of maps which guarantees that these
results still hold. Note that the results of Sections 4 and 7.1 do not involve con-
vergence and hence already apply to any outer approximation. For simplicity we
assume that X is a compact metric space with f : X → X .

DEFINITION 7.5. Given a sequence of outer approximations Fn : Gn
−→→Gn of

f , with diam(Gn) → 0 as n → ∞. The family Fn is convergent if for any ε > 0
there exists an nε > 0, such that

|Fn(Gn)| ⊂ Bε

(
f(Gn)

)
,

for all n ≥ nε, and for all Gn ∈ Gn.

In Sections 5 and 6 the main property of the minimal multivalued map on which
the proofs rested was the convergence of combinatorial orbits to topological orbits
as stated in Proposition 5.4. It is clear that this property holds for a convergent
family of multivalued maps as well, hence we state the following lemma whose
proof is a straightforward modification of the proof of Proposition 5.4.

LEMMA 7.6. Given a convergent sequence of outer approximations Fn :
Gn
−→→Gn for any ε > 0 and k ≥ 1, there exists an nε(k) > 0 such that

|Fk
n(Gn)| ⊂ Bε

(
fk(Gn)

)
,

for all n ≥ nε(k), and for all Gn ∈ Gn.

The convergence of recurrent sets and Lyapunov functions for these maps fol-
lows. The most important example of a convergent family of maps is the case
where the minimal multivalued map is outer-approximated by a computed map
which includes discretization and/or round-off errors. Such maps are convergent
as long as the errors can be made arbitrarily small with the diameter of the grid.

7.3. Flows. So far we have considered primarily discrete dynamical systems
arising from the iteration of a continuous map. There are two different approaches
one could take to generalize the above results for continuous systems or flows.
First, one could consider the time-T map of the flow for fixed T > 0, which can be
approximated by numerical quadrature routines resulting in an outer approximation
of the true time-T map. In the case that the discretization error goes to zero on a
family of grids so that Definition 7.5 is satisfied, the previous results imply that the
grid recurrent sets converge to the chain recurrent set of the time-T map, which is
equal to the chain recurrent set of the flow. Moreover the combinatorial Lyapunov
functions described above converge to a true Lyapunov function for the time-T
map, which is not necessarily a Lyapunov function for the flow. However, Lemma
7.7 below provides a method for approximating a true Lyapunov function for the
flow.

In [1], another approach is proposed in which the flow is approximated di-
rectly using the vector field. A multivalued map on a polygonal decomposition of
a compact region of phase space is generated from a triangulation.
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7.3.1. Lyapunov functions. Recall our discussion in Section 6 and consider
Lyapunov functions for a single attractor-repeller pair. Let Pn be a sequence
of attractor-repeller pairs for Fn approaching an attractor-repeller pair P . From
the construction in Section 6 we obtain a Lyapunov function VPn given by equa-
tion (3). The piecewise constant extension is given by V|Pn|(x). By Lemma 7.6,
V|Pn|(x) converges uniformly for x ∈ X to some Lyapunov function VP (x).

In order to also get results for continuous time dynamical systems we can adopt
the philosophy of deriving Lyapunov functions from the time-1 dynamics. Let
ϕ : R × X → X be a flow. Let v∗P (·, k) be pre-Lyapunov functions for the map
f = ϕ(1, ·) as introduced in Section 6. Then to obtain a Lyapunov function for ϕ
we have the following lemma.

LEMMA 7.7. The function

(9) VP,ϕ(x) = 2 log 2
∫ 1

0
2−tV ∗

P (ϕ(t, x))dt

is a Lyapunov function for the continuous time system ϕ, where V ∗
P =∑∞

m=0 2−m−1v∗∗P (x, m), and v∗∗P (x,m) = maxθ∈[0,1] v∗P (ϕ(θ, x),m), m ≥ 0.

PROOF. The function VP,ϕ(x) = log 2
∫∞
0 2−t supτ≥0

(
vP (ϕ(t+ τ, x))

)
dt is

a continuous Lyapunov function for ϕ, cf. [15]. This function can be rewritten as
follows, using the continuity properties of v∗P as derived in the previous section.

VP,ϕ(x) = log 2
∫ ∞

0
2−t sup

τ≥0

(
vP (ϕ(t + τ, x))

)
dt

= log 2
∫ ∞

0
2−t max

θ∈[0,1]
sup
k≥0

(
vP (ϕ(t + θ + k, x))

)
dt

= log 2
∫ ∞

0
2−t max

θ∈[0,1]
sup
k≥0

(
vP (fk(ϕ(t + θ, x)))

)
dt

= log 2
∫ ∞

0
2−t max

θ∈[0,1]

(
v∗P (ϕ(t + θ, x))

)
dt

= log 2
∞∑

m=0

{∫ 1

0
2−t−m max

θ∈[0,1]

(
v∗P (ϕ(t + m + θ, x))

)
dt

}
= log 2

∫ 1

0
2−t

∞∑
m=0

max
θ∈[0,1]

(
2−mv∗P (ϕ(t + m + θ, x))

)
dt

= log 2
∫ 1

0
2−t

∞∑
m=0

max
θ∈[0,1]

(
2−mv∗P (fm(ϕ(t + θ, x)))

)
dt

= log 2
∫ 1

0
2−t

∞∑
m=0

2−mv∗∗P (ϕ(t, x),m)dt

= 2 log 2
∫ 1

0
2−tV ∗

P (ϕ(t, x))dt,

which proves the lemma.
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Finally, to define a piecewise constant analogue that approximates VP,ϕ one can
numerically approximate ϕ(ti, xGn) at discrete times t0 = 0 < ti < tl = 1 and
use these points to approximate VP,ϕ as follows. Compute v∗|Pn|(ϕ(ti, xGn), k)
as defined in subsection 6.2.2 and approximate v∗∗P (xGn , k) by v∗∗|Pn|(xGn , k) =
max0≤i≤l v∗|Pn|(ϕ(ti, xGn), k). Then letting l → ∞ as n → ∞, the analogue
of Lemma 6.6 holds and the discretization error in both the approximation of
ϕ(ti, xGn) and the integral defining VP,ϕ will tend uniformly to zero as well, yield-
ing convergence to VP,ϕ.

Acknowledgement: We thank the referee for identifying several mistakes in the
original version of this paper.
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