Sprague-Grundy Functions for Divisor Graphs

Aaron Meyerowitz, Florida Atlantic University

Consider these graphs: \mathbb{N}^{\downarrow} has as vertices the positive integers and an edge $q \to q-d$ for every proper divisor d|q, while \mathbb{N}^{\uparrow} has the same vertices and edges, but with direction reversed. So an edge $p \to p + d$ for every divisor d|p. The first, \mathbb{N}^{\downarrow} , could be considered a terminating take-away game and has a unique Sprague-Grundy function (SGf), call it g. That function, which we determine, is also a SGf for \mathbb{N}^{\uparrow} , but not by far not the only one. If we restrict \mathbb{N}^{\downarrow} to an interval [1, T] we get the same SGf. The SGf, g_T , for the restriction of \mathbb{N}^{\uparrow} to [1, T], is only partially understood. But there seems to be strong evidence that

$$\lim_{T \to \infty} g_T = g$$

in the sense that $g_T(n) = g(n)$ for all large enough T.

Keywords: number theory, combinatorial games.