Quantum Walks on Graphs and Group State Transfer

Luke C. Brown, Drexel University; William J. Martin^{*}, Worcester Polytechnic Institute; Duncan Wright, Worcester Polytechnic Institute

Let G = (V, E) be a finite, simple, undirected graph on n vertices with adjacency matrix A. In the theory of quantum information, many recent papers have explored the continuous time evolution of an n-state quantum system with time-dependent evolution operator $U(t) = e^{iAt}$. For $S, T \subseteq V$ and $\tau \in \mathbb{R}$, we say G has (S, T)-group state transfer at time τ if $U(\tau)_{a,b} = 0$ whenever $b \in S$ and $a \notin T$. This is a generalization of perfect state transfer and fractional revival. In this talk, we provide examples as well as a basic theory of group state transfer.

Keywords: quantum walks, state transfer, graph spectra