On Local Antimagic Chromatic Number of Spider Graphs

Gee-Choon Lau^{*,1}, Wai-Chee Shiu², Chee-Xian Soo³, ¹Universiti Teknologi MARA, ²The Chinese University of Hong Kong, ³Nanyang Technological University

An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection $f: E \to \{1, ..., |E|\}$ such that for any pair of adjacent vertices x and y, $f^+(x) \neq f^+(y)$, where the induced vertex label $f^+(x) = \sum f(e)$, with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by $\chi_{la}(G)$, is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we first show that a d-leg spider graph has $d + 1 \leq \chi_{la} \leq d + 2$. We then obtain many sufficient conditions such that both the values are attainable. Finally, we show that each 3-leg spider has $\chi_{la} = 4$ if not all legs are of odd length. No 3-leg spider with all odd leg lengths and $\chi_{la} = 5$ is found. This provides partial solutions to the characterization of k-pendant trees T with $\chi_{la}(T) = k + 1$ or k + 2. We conjecture that almost all d-leg spiders of size q that satisfy $d(d+1) \leq 2(2q-1)$ with each leg length at least 2 has $\chi_{la} = d + 1$.

Keywords: local antimagic labeling, local antimagic chromatic number, spiders