Mongolian Tents admitted HLS and VHLS labelings.

Sin-Min Lee. Alex Jialong-Sun, Sacramento Waldorf School

A (p,q) graph, G=(V, E) is said to be HLS graph if there exists a bijection f: V(G) \rightarrow [q]={1,2,...,q} such that for any $C_3 \sim$ cycle in G with edges { e_1 , e_2 , e_3 }, the triple (f (e_1), f (e_2), f (e_3)) is a S-set (terminology due by I,) nie. f (e_1) + f (e_2)= f (e_3). A dual concept is VHLS graph. A graph G = (V,E) is VHLS if there exists a bijection g: V(G) \rightarrow [p]={1,2,...,p} such that for any C3~cycle in G with vertices { v_1 , v_2 , v_3 }, the triple (g(v_1), g(v_2), g(v_3)) is a S-set, , g(v_1) + g(v_2) = g(v_3). A mogolian tent M(n,h) where n is greater than 2 and h \geq 2 such that

$$V(M(n,h)) = \{u\} \cup \{X_n, j : 1 \le j \le n, x \le i \le h\}$$

Such that

 $E(M(n,h)) = \{(u, x_1, j) : j=1, ..., n\} \text{ and } \{x: j\}$

Forms a grid graph $P_h \ge P_n$.

We show that for any $\ell \ge 2$ and $n \ge 3$, the Mongolian tent is HLS and VHLS graph.