On Friendly Index Sets of Barycentric Subdivision of Wheels

Sin-Min Lee, Upland, CA and Hsin-Hao Su^{*}, Stonehill College.

Let G be a simple graph with vertex set V(G) and edge set E(G), and let A be an abelian group. A labeling $f: V(G) \to A$ induces an edge labeling $f^*: E(G) \to A$ defined by $f^*(xy) = f(x) + f(y)$, for each edge $xy \in E(G)$. For each $i \in A$, let $v_f(i) =$ $|\{v \in V(G) : f(v) = i\}|$ and let $e_f(i) = |\{e \in E(G) : f^*(e) = i\}|$. Let $c(f) = \{|e_f(i) - e_f(j)|: (i, j) \in A \times A\}$. A labeling f of a graph G is said to be A-friendly if $|v_f(i) - v_f(j)| \leq 1$ for all $(i, j) \in A \times A$. If c(f) is a (0, 1)-matrix for an A-friendly labeling f, then f is said to be A-cordial. When $A = \mathbb{Z}_2 = \{0, 1\}$, the friendly index set of the graph G, FI(G), is defined as $\{|e_f(0) - e_f(1)|:$ the vertex labeling f is \mathbb{Z}_2 -friendly}. The subdivision of wheels, S(W(n)), graph is constructed by inserting vertices into the edges in the cycle part of a wheel graph. In this paper, we investigate and present results concerning the friendly index sets of the subdivision of wheels S(W(n)).

Keywords: vertex labeling, friendly labeling, cordiality, subdivision, wheels