On the k-Steiner radius and k-Steiner Diameter of a graph with $4 \le k \le 5$

Josiah Reiswig, University of South Carolina

Given a connected graph G = (V, E) and a vertex set $S \subset V$, the Steiner distance d(S)of S is the size of a minumum spanning tree of S in G. For a connected graph G of order n and an integer k with $2 \leq k \leq n$, the k-eccentricity of v of a vertex v in G is the maximum value of d(S) over all $S \subset V$ with |S| = k and $v \in S$. The minimum k-eccentricity rad_k(G) is called the k-radius of G and the maximum k-eccentricity diam_k(G) is called the k-diameter of G. In their 1990 paper "On the Steiner Radius and Steiner Diameter of a Graph," Henning, Oellermann, and Swart showed that for each $k \geq 2$, there exists a graph G_k such that diam_k(G_k) = $\frac{2(k+1)}{2k-1}$ rad_k(G_k). Additionally, the authors proved that for any connected graph G, diam₃(G) $\leq \frac{8}{5}$ rad₃(G) and diam₄(G) $\leq \frac{10}{7}$ rad₄(G). In this talk, a related proof that diam₄(G) $\leq \frac{10}{7}$ rad₄(G).

Keywords: graph distance, Steiner distance, Steiner diameter, Steiner radius