About Colorings of (3,3)-Uniform Complete Circular Mixed Hypergraphs

N.A. Newman*, K. Roblee, V. Voloshin, Troy University

A mixed hypergraph is a triple $\mathcal{H}=(X, \mathcal{C}, \mathcal{D})$, where X is the vertex set and each of \mathcal{C} and \mathcal{D} is a family of subsets of X, the \mathcal{C} -edges and \mathcal{D} -edges, respectively. A proper k-coloring of \mathcal{H} is a mapping such that each \mathcal{C} -edge has two vertices with a common color and each \mathcal{D} -edge has two vertices with distinct colors. A mixed hypergraph \mathcal{H} is called circular if there exists a host cycle on the vertex set X such that every edge (\mathcal{C} - or \mathcal{D} -) induces a connected subgraph of this cycle. We propose an algorithm to color the (3,3)-uniform, complete, circular, mixed hypergraphs for every value on its feasible set. In doing so, we show $\chi(\mathcal{H}) = 2$ and $\bar{\chi}(\mathcal{H}) = n/2$ when n is even and $\bar{\chi}(\mathcal{H}) = \frac{n-1}{2}$ when n is odd.

Keywords: circular, hypergraph, coloring, uniform