An Ordered Tuple Construction of Classical Geometric (Clifford) Algebras and Geometric Algebras with Signature. Timothy Myers, Howard University

Geometric or Clifford algebras are an increasingly useful structure for studying graphs. In a previous talk we constructed the geometric algebra \mathbb{G}^3 by defining a geometric product on ordered 8-tuples in a manner that resembles the ordered four-tuple construction of the quaternions. In this talk we will use enumeration and properties of finite dimensional algebraic structures to construct *any* classical Clifford Algebra \mathbb{G}^n by similarly defining a geometric product on $\mathbb{R}^{(2^n)}$. We will establish a basis of monomials for \mathbb{G}^n by multiplying those tuples which generate \mathbb{G}^n ; specifically the images canonically mapped from any orthonormal basis on \mathbb{R}^n .

By similarly embedding an orthonormal basis from \mathbb{R}^n equipped with a quadratic form, we will extend this construction to the Clifford algebra with signature (p,q)where p + q = n, denoted $\mathbb{G}^{p,q}$. For specified values of n, we will derive a new set of generators for $\mathbb{G}^{0,n}$ that define a Clifford graph algebra, and show how these algebras can represent path graphs and star graphs.

Keywords : Clifford algebra, geometric product, path graph, star graph.