On the Integer-antimagic Spectra of Hamiltonian Graphs

Richard M. Low^{*}, San Jose State University Ugur Odabasi, Istanbul University Daniel Roberts, Illinois Wesleyan University Jinze Zheng, Illinois Wesleyan University

Let A be a nontrival abelian group. A connected simple graph G = (V, E) is A-antimagic if there exists an edge labeling $f : E(G) \to A \setminus \{0\}$ such that the induced vertex labeling $f^+ : V(G) \to A$, defined by $f^+(v) = \sum_{uv \in E(G)} f(uv)$, is injective. The integer-antimagic spectrum of a graph G is the set IAM $(G) = \{k \mid G \text{ is } \mathbb{Z}_k\text{-antimagic and } k \geq 2\}$. In this talk, we analyze the integer-antimagic spectra of Hamiltonian graphs.

Keywords: group-antimagic graph, integer-antimagic spectrum, Hamiltonian graph