$TS(v, \lambda)$ with cyclic 2-intersecting Gray codes: $v \equiv 0$ or 4 (mod 12)

Melissa Keranen*, Michigan Technological University, John Asplund, Dalton State College

A $\operatorname{TS}(v, \lambda)$ is a pair (V, \mathcal{B}) where V contains v points and \mathcal{B} contains 3-element subsets of V so that each pair in V appear in exactly λ blocks. A 2-block intersection graph (2-BIG) of a $\operatorname{TS}(v, \lambda)$ is a graph where each vertex is represented by a block from $\operatorname{TS}(v, \lambda)$ and each pair of blocks $B_i, B_j \in \mathcal{B}$ are joined by an edge if $|B_i \cap B_j| = 2$. We show that there exists a $\operatorname{TS}(v, \lambda)$ for $v \equiv 0$ or 4 (mod 12) whose 2-BIG is Hamiltonian. This is equivalent to the existence of a $\operatorname{TS}(v, \lambda)$ with a cyclic 2-intersecting Gray code.

Keywords: triple system, block intersection graphs, Gray codes, Hamilton cycle