C_4 -face-magic torus labelings on $C_{2m} \times C_{2n}$

Stephen Curran^{*}, University of Pittsburgh at Johnstown Richard Low, San Jose State University

For a toroidal graph G = (V, E) embedded in the torus, let $\mathcal{F}(G)$ denote the set of faces of G. Then, G is called a C_n -face-magic torus graph if there exists a bijection $f : V(G) \rightarrow$ $\{1, 2, \ldots, |V(G)|\}$ such that for any $F \in \mathcal{F}(G)$ with $F \cong C_n$, the sum of all the vertex labelings along C_n is a constant S. Let $x_v = f(v)$ for all $v \in V(G)$. We call $\{x_v : v \in V(G)\}$ a C_n -face magic torus labeling on G. We investigate C_4 -face-magic torus labelings on $C_{2m} \times C_{2n}$. We say that a C_4 -face-magic torus labeling $\{x_{i,j}\}$ on $C_{2m} \times C_{2n}$ is antipodal balanced if $x_{i,j} + x_{i+m,j+n} = (1/2)S$ for all $(i, j) \in V(C_{2m} \times C_{2n})$. We show that there exists a C_4 -facemagic antipodal balanced torus labeling on $C_{2m} \times C_{2n}$ for all positive integers m and n. We investigate properties of these labelings on $C_{2m} \times C_{2n}$. We also determine all C_4 -face-magic antipodal balanced torus labeling on $C_4 \times C_4$ up to symmetries on a torus.

Keywords: C_4 -face-magic graphs, polyomino, Cartesian products of cycles