Beta-Packing Sets in Graphs

Benjamin M. Case*, Renu C. Laskar, and Evan Haithcock, Clemson University

A set $S \subseteq V$ is α -dominating if for all $v \in V - S$, $|N(v) \cap S| \geq \alpha |N(v)|$. The α -domination number of G equals the minimum cardinality of an α -dominating set S in G. Since being introduced by Dunbar, et al. in 2000, α -domination has been studied for various graphs and a variety of bounds have been developed. In this paper, we propose a new parameter derived by flipping the inequality in the definition of α -domination. We say a set $S \subset V$ is a β -packing set of a graph G if S is a proper, maximal set having the property that for all vertices $v \in V - S$, $|N(v) \cap S| \leq \beta |N(v)|$ for some $0 < \beta \leq 1$. The β -packing number of G(β -pack(G)) equals the maximum cardinality of a β -packing set in G. The single greatest interest of studying β -packing sets, as with α -dominating sets, is finding the value of β pack(G) for some graph. In this research, we set out to find β -pack(G) for different types of graphs. We focused particular attention on 1/2 β -packing sets; that is, where we set $\beta = 1/2$.

Keywords: α -domination, β -packing, graph theory, graph parameters