Trees for Given Values of the Span, Caps and Icaps for L(2,1)-Colorings

V. Coufal², K. Fogel¹, A. Higgins³, W. Higgins⁴, R. Ray², J. Villalpando^{* 1}, K. Yerion² ¹ California Lutheran University, ² Gonzaga University, ³ University of Dayton, ⁴ Wittenberg University

An L(2, 1)-coloring of a graph is a labeling of the vertices using non-negative integers such that adjacent vertices differ in label by at least 2 and distance two vertices differ in label. The span of an L(2, 1)-coloring is the smallest integer λ for a given graph such that there exists an L(2, 1)-coloring of the graph using only non-negative integers less than or equal to λ . The invariant caps, denoted $\bar{\kappa}$, is the least number of color classes required to create an L(2, 1)-coloring on a given graph. An L(2, 1)-coloring of a graph is irreducible if reducing the label on any vertex violates an L(2, 1)-coloring condition. The invariant icaps, denoted κ , is the least number of color classes required to create an irreducible L(2, 1)-coloring on a given graph. For any tree T it is known that $\Delta + 1 \leq \bar{\kappa} \leq \kappa \leq \lambda + 1$ and $\lambda \in \{\Delta + 1, \Delta + 2\}$ where Δ is the maximum degree of the tree. Thus, there are only three possible values for $\bar{\kappa}$ and κ : $\Delta + 1, \Delta + 2, \Delta + 3$. We prove that $\bar{\kappa} = \Delta + 1$ for all trees. Then for each of the two possible values of λ , we consider the three possible values of κ , determine if there exists a tree with the two specified values of λ and κ , and provide a family of such trees if any exist.

Keywords: L(2, 1)-coloring, irreducible L(2, 1)-coloring, caps, icaps, span