Graphs whose generalized adjacency matrix has few distinct eigenvalues

Sakander Hayat*, Universiti Brunei Darussalam,

Ximing Cheng, Muhammad Javaid, Jack Koolen, University of Science and Technology of China

The generalized adjacency matrix of a graph Γ is defined as M(x, y, z) := xI + yA + z(J - I - A), where x, y and z are real numbers satisfying $y \neq z$ and J (resp. I) is the all-ones matrix (resp. identity matrix) of suitable dimension. For a real number h, we define the matrix B_h by, $B_h := A + h(J - I)$. This implies that M is an affine transformation of B_h . Note that the Seidel matrix S of a graph defined as S := J - I - 2A, then $S = -2B_{-\frac{1}{2}}$. The adjacency matrix of a graph is $A = B_0$ and adjacency matrix of its complement is $\overline{A} := J - I - A$ and $\overline{A} = -B_{-1}$. Note that the B_h matrix is always irreducible if $h \notin \{0, -1\}$. In this talk, I will present some results regarding graphs with few distinct B_h -eigenvalues which we have proven recently. Graphs with two distinct B_h -eigenvalues have been characterized. Various results on connected graphs with three distinct B_h -eigenvalues are also characterized. As a by-product, we obtain the first example of non-regular non-bipartite graphs with three distinct distance eigenvalues.

Keywords: graph, adjacency matrix, generalized adjacency matrix, interlacing, few distinct eigenvalues, strong graphs, Perron-Frobenius theory, spectral characterizations