An FPRAS for k-edge connected unreliability

Thomas Lange, University of Applied Sciences Mittweida

In 2001, Karger proposed the first fully polynomial random approximation scheme to approximate the network unreliability, i.e. the probability that a graph whose edges fail stochastically independent with equal probability q becomes disconnected. It is based on the observation that the number of cuts up to a given size αc – where c denotes the size of the min-cut - is at most $n^{2\alpha}$ and thus grows polynomially. On the other hand, the chance that a cut of size αc fails decreases exponentially with α (namely $(q^c)^{\alpha}$). Karger could show that there is some treshold-value α^* such that the probability that some cut with size at most $\alpha^* c$ is sufficient to approximate the probability that the graph becomes disconnected. Karger stated that this procedure can be easily extended to k-edge connected unreliablity (the probability that the surviving subgraph has edge-connectivity less than k) because – as he states – the probability that a cut has less than k surviving edges also decreases exponentially with the size of the cut. However, the probability that a cut of size αc has less than k surviving edges is $\sum_{i=0}^{k-1} {\alpha c \choose i} q^{\alpha c-i} (1-q)^i$ and thus also contains a factor which grows with the size of αc which Karger does not account for. In this talk, we show that it is still possible to obtain an FPRAS using the approach of Karger whenever k is fixed. However, the runtime of our approximation scheme scales with n^k .

Keywords: FPRAS, reliability, higher connectivity