

An extremal problem for minimally k -connected graphs

Haiying Wang, Bing Wei, Haidong Wu, Yingze Zhao*, University of Mississippi

Let k be a positive integer. A graph is minimally k -connected if it is k -connected, but for each edge e of G , the deletion of e from G is not k -connected. A classical result of Mader states that every minimally k -connected graph contains at least $\Delta(G)$ vertices of degree k , where $\Delta(G)$ is the maximum degree of G . In this paper, for $k = 3, 4$, we characterize all minimally k -connected graphs G having exactly $\Delta(G)$ vertices of degree k . Our results give a complete description of the extremal graphs attaining Mader's bound in these two cases.

Keywords: connectivity, minimally k -connected graphs, extremal graphs, graph constructions