Totally non-negativity of a family of change-of-basis matrices

Yufei Zhang*, David Galvin, University of Notre Dame

A matrix is totally non-negative if all its minors are nonnegative. Let $\mathbf{a} = (a_1, a_2, \ldots, a_n)$ and $\mathbf{e} = (e_1, e_2, \ldots, e_n)$ be real sequences. We let $M_{e \to a}$ denote the $(n+1) \times (n+1)$ change-of-basis matrix whose (m, k)th entry is the coefficient of the polynomial $(x - a_1)(x - a_2) \ldots (x - a_k)$ in the expansion of $(x - e_1)(x - e_2) \ldots (x - e_m)$ as a linear combination of the polynomials $1, x - a_1, \ldots, (x - a_1) \ldots (x - a_m)$.

In this talk, we will see that $M_{e \to a}$ encodes many combinatorial objects. Further, we fully characterize **a** and **e** sequences such that $M_{e \to a}$ is totally non-negative.

Keywords: total non-negativity, change-of-basis matrices, algorithm