Totally non-negativity of a family of change-of-basis matrices

Yufei Zhang*,David Galvin, University of Notre Dame
A matrix is totally non-negative if all its minors are nonnegative. Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ be real sequences. We let $M_{e \rightarrow a}$ denote the $(n+1) \times(n+1)$ change-of-basis matrix whose (m, k) th entry is the coefficient of the polynomial $\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{k}\right)$ in the expansion of $\left(x-e_{1}\right)\left(x-e_{2}\right) \ldots\left(x-e_{m}\right)$ as a linear combination of the polynomials $1, x-a_{1}, \ldots,\left(x-a_{1}\right) \ldots\left(x-a_{m}\right)$.
In this talk, we will see that $M_{e \rightarrow a}$ encodes many combinatorial objects. Further, we fully characterize a and e sequences such that $M_{e \rightarrow a}$ is totally non-negative.
Keywords: total non-negativity, change-of-basis matrices, algorithm

