

G -Designs for the Connected Tripartite Unicyclic Graphs with Seven Edges

Bryan Freyberg, Yujeong Hong, Zachary Youngs*, University of Minnesota Duluth

For a subgraph G of the complete graph K_n , a G -design of order n is a partition of the edge set of K_n into edge-disjoint copies of G . The spectrum problem in this context asks for which n a G -design of order n exists. This problem has been completely solved for every graph with 6 or less edges and most of the graphs with 7 or 8 edges. We solve the spectrum problem for one of the few remaining families of small graphs by proving that if G is a connected tripartite unicyclic graph with 7 edges, then a G -design of order n exists if and only if $n \equiv 0$ or 1 (mod 7), with a few exceptions when $n \in \{7, 8\}$.

Keywords: G -decomposition, G -design, ρ -tripartite labeling, λ -labeling, unicyclic graphs