

The Pinnacle Sets of a Graph

Chassidy Bozeman¹, Christine Cheng², Pamela E. Harris², Stephen Lasinis², and Shanise Walker^{*3}

¹Mount Holyoke College, ²University of Wisconsin-Milwaukee, ³Clark Atlanta University

We introduce and study the pinnacle sets of a simple graph G with n vertices. Given a bijective vertex labeling $\lambda : V(G) \rightarrow [n]$, the label $\lambda(v)$ of vertex v is a *pinnacle* of (G, λ) if $\lambda(v) > \lambda(w)$ for all vertices w in the neighborhood of v . The *pinnacle set* of (G, λ) contains all the pinnacles of the labeled graph. A subset $S \subseteq [n]$ is a *pinnacle set* of G if there exists a labeling λ such that S is the pinnacle set of (G, λ) . We show that when G is connected, G has a size- k pinnacle set if and only if G has an independent set of the same size. We identify all the pinnacle sets of complete graphs, complete bipartite graphs, cycles and paths. We also present a technique for deriving new pinnacle sets from old ones that imply a typical graph has many pinnacle sets.

Keywords: Graph labeling, pinnacle, pinnacle set, independent set, poset, path, cycle