On z-cycle factorizations with two associate classes where z is $2 a$

Joshua Lambert, Michael Tiemeyer*, Georgia Southern University
Let $K=K\left(a, p ; \lambda_{1}, \lambda_{2}\right)$ be the multigraph with: the number of vertices in each part equal to a; the number of parts equal to p; the number of edges joining any two vertices of the same part equal to λ_{1}; and the number of edges joining any two vertices of different parts equal to λ_{2}. The existence of C_{4}-factorizations of K has been settled when a is even; when $a \equiv 1(\bmod 4)$ with one exception; and for very few cases when $a \equiv 3(\bmod 4)$. The existence of C_{z}-factorizations of K has been settled when $a \equiv 1(\bmod z)$ and λ_{1} is even, and when $a \equiv 0(\bmod z)$. In this paper, we give progress for C_{z}-factorizations of K for $z=2 a$.

Keywords: cycles, factorization, associate classes

