On Subdivision Graphs of Cylinder Graphs which are 2-steps Hamiltonian

Maxwell Y. Su, Oliver Ames High School and Hsin-Hao Su*, Stonehill College.

Let G be a graph with vertex set V(G) and edge set E(G). A (p,q)-graph G=(V,E) is said to be $\mathrm{AL}(k)$ -traversal if there exist a sequence of vertices $\{v_1,v_2,\ldots,v_p\}$ such that for each $i=1,2,\ldots,p-1$, the distance for v_i and v_{i+1} is equal to k. We call a graph G a k-steps Hamiltonian graph if it has a $\mathrm{AL}(k)$ -traversal in G and the distance between v_p and v_1 is k. In this paper, we give a construction of subdivision graphs of cylinder graphs, $C_m \times P_n$, to be 2-steps Hamiltonian.

Keywords: k-steps Hamiltonian, cylinder graphs, subdivision graphs, AL(k)-traversal