Total Non-negativity of Generating Functions

David Galvin, University of Notre Dame, John Engbers, Marquette University, Clifford Smyth*, UNCG

A generating function is totally non-negative if each term in its expansion has a non-negative coefficient. We explore conditions on the coefficients of a generating function $f(x)$ that ensure that $f^{-1}(x)$, the compositional inverse of $f(x)$, is totally non-negative. For instance, if $f(x)=\sum_{r \in R}(-1)^{r-1} x^{r} / r$!, where R is a set of positive integers, a sufficient condition for $f^{-1}(x)$ to be totally non-negative is that $1 \in R$ and that the maximal consecutive intervals of R have even endpoints. For example, taking $R=\{1,2\} \cup\{4\} \cup\{6,7,8, \ldots\}$ ensures that $f^{-1}(x)$ is totally non-negative. The proofs of total non-negativity are combinatorial, in the sense that we show that the coefficients are non-negative because each one is the size of a class of combinatorial objects.

