

Extensions of Colored Domination

Anne Sinko, College of Saint Benedict and Saint John's University

Given a partition $\mathcal{S} = \{S_1, S_2, \dots, S_t\}$ of the vertex set $V(G)$ of a graph G , \mathcal{S} is called the coloring of G and S_i is the color class i . An \mathcal{S} -dominating set D is a dominating set with the property that either $D \cap S_i = S_i$ or $D \cap S_i = \emptyset$ for $1 \leq i \leq t$. The \mathcal{S} -domination number $\gamma(G; \mathcal{S})$ is the minimum cardinality of an \mathcal{S} -dominating set. The k -partition domination number, $\gamma_{PRT(k)}(G)$, is the maximum value of $\gamma(G; \mathcal{S})$ over all partitions with each $|S_i| \leq k$, and the k -partition proper colored domination number, $\gamma_{PRT(k)}^*(G)$, is the maximum value of $\gamma(G; \mathcal{S})$ over all enclaveless partitions with each $|S_i| \leq k$. This talk will focus on new classes of graphs as well as applying these definitions to Liar's dominating sets and other set-sized dominating sets.

Keywords: Domination, Coupled Domination, Colored-Domination, Proper-Colored-Domination, Liar's Domination, Set-Sized Domination