

Shameful Inequalities for List and DP Coloring of Graphs

Gunjan Sharma*, Hemanshu Kaul, Jeffrey A. Mudrock, Lake Forest College

The chromatic polynomial $P(G, k)$, introduced by Birkhoff in 1912, counts the number of proper k -colorings of a graph G . Enumerative analogues have since been developed for two generalizations of graph coloring: list coloring, via the list color function P_ℓ , and DP-coloring, via the DP color function P_{DP} and the dual DP color function P_{DP}^* . For any graph G and $k \in \mathbb{N}$, these functions satisfy $P_{DP}(G, k) \leq P_\ell(G, k) \leq P(G, k) \leq P_{DP}^*(G, k)$. In 2000, Dong settled the so-called Shameful Conjecture of Bartels and Welsh by proving that for any n -vertex graph G , $\frac{P(G, k+1)}{(k+1)^n} \geq \frac{P(G, k)}{k^n}$ for all $k \geq n-1$, while Seymour showed that the inequality can fail for smaller k . We study analogous inequalities for list and DP color functions. We prove that for any n -vertex graph G , $\frac{P_\ell(G, k+1)}{(k+1)^n} \geq \frac{P_\ell(G, k)}{k^n}$ and $\frac{P_{DP}(G, k+1)}{(k+1)^n} \geq \frac{P_{DP}(G, k)}{k^n}$ for all $k \in \mathbb{N}$. For the dual DP color function, we show that the inequality fails in general but holds for all $k \geq n-1$ when G is an n -vertex complete bipartite graph.

Keywords: Shameful Conjecture, list color function, DP color function, list coloring, DP-coloring