The degree/Steiner k-diameter problem for trees

Golven Leroy and Josiah Reiswig*, Anderson University (SC)
Given integers $d \geq 1$ and $\Delta \geq 3$, the degree/diameter problem asks for the largest possible order of a graph with diameter d and maximum degree Δ. It was shown in [Christou, Iliopoulos, and Miller, Degree/diameter problem for trees and pseudotrees. AKCE International Journal of Graphs and Combinatorics, 10:4, 377-389 (2013)] that for any tree of order n, diameter d, and maximum degree Δ, we have that

$$
n \leq \begin{cases}\frac{2(\Delta-1)^{(d+1) / 2}-2}{\Delta-2}, & \text { if } d \text { is odd, and } \\ \frac{\Delta(\Delta-1)^{d / 2}-2}{\Delta-2}, & \text { if } d \text { is even. }\end{cases}
$$

We extend the degree diameter problem to the degree/Steiner k-diameter problem. That is, given integers $k \geq 2, d \geq k-1$, and $\Delta \geq 3$, we ask for the largest possible order of a graph with maximum degree Δ and Steiner k-diameter d. Furthermore, we show that if a tree has order n, diameter d, and maximum degree Δ, then $n \leq \frac{\Delta(\Delta-1)^{\ell}-2}{\Delta-2}+(d-k \ell)(\Delta-1)^{\ell}$, where $\ell=\min \left\{\left\lfloor\frac{d}{k}-\frac{k-\Delta}{k(\Delta-2)}\right\rfloor,\left\lfloor\frac{d}{k}\right\rfloor\right\}$. Furthermore, we show that this bound is sharp. Keywords: degree, diameter, Steiner, tree

