Word-Representable Graphs: Orientations, Posets, and Bounds

Zion Hefty, Paul Horn, University of Denver; Colby Muir, Auburn University; Andrew Owens*, Widener University

While word-representable graphs were introduced to study questions in algebra, there has been continued interest in the topic for their own combinatorial properties. A graph G is said to be word-representable if there exists a string, w, consisting of the characters v_{1}, \ldots, v_{n} for $v_{i} \in V(G)$ where $v_{i} v_{j} \in E(G)$ if and only if v_{i} and v_{j} alternate in w. The representation number of a word-representable graph is the smallest k such that w is k-uniform (each vertex appears exactly k times in w). In this talk we will explore the representation number of Hasse diagrams.

Keywords: word-representability, Hasse diagrams, posets

