

On Single-Distance Graphs in \mathbb{R}^n but Not \mathbb{Z}^n

Matt Noble, Middle Georgia State University

Let $S \subseteq \mathbb{R}^n$. Define a graph G to be a *single-distance graph* in S if G can be drawn with its vertices being points of S and its edges being line segments, each of the same length. A problem (posed at this very conference!) asks for the minimum chromatic number among all graphs G which are single-distance graphs in \mathbb{R}^n but are not single-distance graphs in the integer lattice \mathbb{Z}^n . In this talk, we will answer this question for $n = 2$ and give bounds on the answer for larger n .

Keywords: unit-distance graph, rigidity, lattice points