Regular graphs with two distinct eigenvalues

Wayne Barrett, Brigham Young University, Shaun Fallat, University of Regina, Veronika Furst, Fort Lewis College, Shahla Nasserasr*, Rochester Institute of Technology, Brendan Rooney, Rochester Institute of Technology, Michael Tait, Villanova University, Hein vand der Holst, Georgia State University
For an $n \times n$ matrix A, let $q(A)$ be the number of distinct eigenvalues of A. If G is a connected graph on n vertices, let $\mathcal{S}(G)$ be the set of all real symmetric $n \times n$ matrices $A=\left[a_{i j}\right]$ such that $a_{i j}=0$ if and only if $\{i, j\}$ is not an edge of G. Let $q(G)=\min \{q(A) \mid A \in \mathcal{S}(G)\}$. Determining $q(G)$ is a fundamental subproblem of the inverse eigenvalue problem for graphs, and characterizing the case for which $q(G)=2$ has been especially difficult. Some progress has been made by considering the problem for regular graphs. It turns out that it is easy if the degree of regularity is 1,2 , or 3 . But the 4 -regular graphs with $q(G)=2$ are much more difficult to characterize. A connected 4-regular graph has $q(G)=2$ if and only if either G belongs to an easily described infinite class of graphs, or else G is one of sixteen 4regular graphs whose number of vertices ranges from 5 to 16 . This technical result gives rise to several intriguing question.

