

Two-factorizations of some regular graphs

Mariusz Meszka, AGH University of Kraków, Poland

A k -factor in a graph G is a k -regular spanning subgraph of G . A k -factorization of G is a collection $\{F_1, F_2, \dots, F_t\}$ of edge-disjoint k -factors such each edge of G belongs to exactly one F_i . We say that G has an F -factorization if each F_i , $i = 1, 2, \dots, t$, is isomorphic to F . One of the best-known open problems concerning two-factorizations is the famous Oberwolfach problem, posed by G. Ringel in 1967, which asks whether, for any two-factor F , the complete graph K_n (when n is odd) or $K_n \setminus I$ (when n is even and I is a one-factor removed from K_n) admits an F -factorization. Several years later A. Rosa suggested the Hamilton-Waterloo problem which asks for the existence of a two-factorization of K_n or $K_n \setminus I$ (depending on the parity of n) in which r of its two-factors are isomorphic to a given two-factor R , and the remaining q two-factors are isomorphic to a given two-factor Q , for any admissible r and q .

Results related to both these problems will be presented.

Keywords: two-factor, two-factorization, Oberwolfach problem, Hamilton-Waterloo problem