On Edge-Balance Index Sets of Connected Complete Graphs

Leyda Almodóvar, Robert McAlpine^{*}, Hsin-Hao Su, and Heiko Todt, Stonehill College.

Let G be a simple graph with vertex set V(G) and edge set E(G), and let $\mathbb{Z}_2 = \{0, 1\}$. Any edge labeling f induces a partial vertex labeling $f^+ : V(G) \to \mathbb{Z}_2$ assigning 0 or 1 to $f^+(v)$, v being an element of V(G), depending on whether there are more 0-edges or 1-edges incident with v, and no label is given to $f^+(v)$ otherwise. For each $i \in \mathbb{Z}_2$, let $v_f(i) = |\{v \in V(G) : f^+(v) = i\}|$ and let $e_f(i) = |\{e \in E(G) : f(e) = i\}|$. An edge-labeling f of G is said to be edge-friendly if $\{|e_f(0) - e_f(1)| \leq 1$. The edge-balance index set of the graph G is defined as $\text{EBI}(G) = \{|v_f(0) - v_f(1)| : f \text{ is edge-friendly.}\}$. In this paper, the edge-balance index sets of two complete graphs joined at a common vertex are presented.

Keywords: vertex labeling, edge labeling, friendly labeling, cordiality, edge-balance index set, complete graphs