Construction of fixed even size graphs with local antimagic chromatic number 3 - matrix \& vertices merging approaches

Gee-Choon Lau*, ${ }^{*,}$, Wai Chee Shiu ${ }^{b}$, M. Nalliah ${ }^{c}$, K. Premalatha ${ }^{d}$

${ }^{a} 77$ D, Jalan Subuh, Johor, Malaysia
${ }^{b}$ The Chinese University of Hong Kong, Hong Kong
${ }^{c}$ Vellore Institute of Technology, India
${ }^{d}$ Sri Shakthi Institute of Engineering and Technology, India.
An edge labeling of a connected graph $G=(V, E)$ is said to be local antimagic if it is a bijection $f: E \rightarrow\{1, \ldots,|E|\}$ such that for any pair of adjacent vertices x and $y, f^{+}(x) \neq f^{+}(y)$, where the induced vertex label $f^{+}(x)=\sum f(e)$, with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by $\chi_{l a}(G)$, is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. Suppose $\chi_{l a}(G)=\chi_{l a}(H)$ and G_{H} is obtained from G and H by merging some vertices of G with some vertices of H bijectively. In this paper, we first give ways to construct matrices with integers in $[1,10 k], k \geq 1$, that meet certain properties. These matrices are then used to construct various families of graphs of size $10 k$ with a corresponding local antimagic labeling. We then introduce the vertices merging approach to construct new families of graphs of size $10 k$ with a corresponding local antimagic labeling. Consequently, we proved that all these (possibly disconnected) tripartite (and bipartite) graphs have local antimagic chromatic number 3. Open problems are also introduced.

Keywords: Local antimagic chromatic number, matrix, even size

