Construction of fixed even size graphs with local antimagic chromatic number 3 - matrix & vertices merging approaches

Gee-Choon Lau^{*,a}, Wai Chee Shiu^b, M. Nalliah^c, K. Premalatha^d ^a77D, Jalan Subuh, Johor, Malaysia ^bThe Chinese University of Hong Kong, Hong Kong ^cVellore Institute of Technology, India ^dSri Shakthi Institute of Engineering and Technology, India.

An edge labeling of a connected graph G = (V, E) is said to be local antimagic if it is a bijection $f : E \to \{1, \ldots, |E|\}$ such that for any pair of adjacent vertices x and y, $f^+(x) \neq f^+(y)$, where the induced vertex label $f^+(x) = \sum f(e)$, with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by $\chi_{la}(G)$, is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. Suppose $\chi_{la}(G) = \chi_{la}(H)$ and G_H is obtained from G and H by merging some vertices of G with some vertices of H bijectively. In this paper, we first give ways to construct matrices with integers in $[1, 10k], k \geq 1$, that meet certain properties. These matrices are then used to construct various families of graphs of size 10k with a corresponding local antimagic labeling. We then introduce the vertices merging approach to construct new families of graphs of size 10k with a corresponding local antimagic labeling. Consequently, we proved that all these (possibly disconnected) tripartite (and bipartite) graphs have local antimagic chromatic number 3. Open problems are also introduced.

Keywords: Local antimagic chromatic number, matrix, even size