

Another look at an idea of Amin and Slater
Peter Johnson, Auburn University

Suppose that G is a finite simple graph and f is a function from $V(G)$ into the set {even,odd}; f is a *parity assignment* to $V(G)$. In a definition due to A.T. Amin and P.J. Slater, proposed at this conference in 1992, a subset S of $V(G)$ is an *f -neighborhood-dominating set* iff for each vertex v of G , $|N[v] \cap S|$ has parity $f(v)$. (In this case, S *realizes* f .) If such an S exists for every parity assignment to $V(G)$, G is declared to be an All Parity Realizable (APR) graph.

Amin and Slater were (impishly?) aware that f -neighborhood-dominating sets are not necessarily dominating. This raises a number of questions, such as: for which graphs G is there a **dominating** f -neighborhood-dominating set in G for every parity assignment f to $V(G)$? [Spoiler alert: no, wait, I'm not going to spoil it for you. False alarm.] Besides this we will consider: given G and an integer $q > 2$, for which assignments g of congruence classes mod q to the vertices of G can there be subsets of $V(G)$ “realizing” g , in the sense analogous to that of Amin and Slater, in the case $q = 2$?