New bounds on the anti-Ramsey numbers of star graphs via maximum edge q-coloring

L. Sunil Chandran, Talha Hashim, IISc, Bangalore, Dalu Jacob*, University of Haifa, Rogers Mathew, IIT Hyderabad, Deepak Rajendraprasad, IIT Palakkad, Nitin Singh, IBM Research, Bangalore.

The anti-Ramsey number ar (G, H) with input graph G and pattern graph H, is the maximum positive integer k such that there exists an edge coloring of G using k colors, in which there are no rainbow subgraphs isomorphic to H in G. (H is rainbow if all its edges get distinct colors). The concept of anti-Ramsey number was introduced by Erdős et al. in 1973. Thereafter, several researchers investigated this concept in the combinatorial setting. Recently, Feng et al. revisited the anti-Ramsey problem for the pattern graph $K_{1, t}$ (for $t \geq 3$) purely from an algorithmic point of view. For a graph G and an integer $q \geq 2$, an edge q-coloring of G is an assignment of colors to edges of G, such that the edges incident on a vertex span at most q distinct colors. The maximum edge q-coloring problem seeks to maximize the number of colors in an edge q-coloring of the graph G. Note that the optimum value of the edge q-coloring problem of G equals $\operatorname{ar}\left(G, K_{1, q+1}\right)$. Here, we study $\operatorname{ar}\left(G, K_{1, t}\right)$, the anti-Ramsey number of stars, for each fixed integer $t \geq 3$, both from combinatorial and algorithmic point of view. The first of our main results presents an upper bound for $\operatorname{ar}\left(G, K_{1, q+1}\right)$, in terms of number of vertices and the minimum degree of G. The second one improves this result for the case of triangle-free input graphs. Our third main result presents an upper bound for $\operatorname{ar}\left(G, K_{1, q+1}\right)$ in terms of $\left|E\left(G_{\leq(q-1)}\right)\right|$, which is a frequently used lower bound for $\operatorname{ar}\left(G, K_{1, q+1}\right)$ and maximum edge q-coloring in the literature. All our results have algorithmic consequences.
Key Words: Anti-Ramsey Number, Maximum edge q-coloring problem, Approximation algorithm.

