Equitable Choosability of Prism Graphs

Kirsten Hogenson*, Skidmore College; Dan Johnston, Trinity College; Suzanne O'Hara, Wesleyan University
A graph G is equitably k-choosable if, for every k-uniform list assignment L, G is L-colorable and each color appears on at most $\lceil|V(G)| / k\rceil$ vertices. Equitable list-coloring was introduced by Kostochka, Pelsmajer, and West in 2003 [A list analogue of equitable coloring, J. Graph Theory 44 (2003) 166-177]. They conjectured that a connected graph G with $\Delta(G) \geq 3$ is equitably $\Delta(G)$-choosable, as long as G is not complete or $K_{d, d}$ for odd d. In this talk, we discuss a discharging proof which verifies their conjecture for the infinite family of prism graphs.

Keywords: list coloring, equitable list coloring, reducible configuration, discharging

