Root Behavior of Golden-like Recursive Polynomials

Kristen Hallas*, University of Texas Rio Grande Valley, Joan Mattle, Ithaca College, Deanna Perez*, San Francisco State University, Aklilu Zeleke, Michigan State University

We present properties of the classic Fibonacci-type recursive polynomials defined by Hoggatt in 1973 and the Golden-type recursive polynomials described by Moore in 1993. This work introduces a second order recursive sequence of Golden-like polynomials defined by

$$
G_{n+1}(x)=x^{k} G_{n}(x)+x^{l} G_{n-1}(x), k, l \text { positive integers }
$$

with $G_{0}=-1, G_{1}=x-1$
We will show analytic and numerical results on the nature of the real roots of G_{n}, which extends the known results for Fibonacci-like polynomials. Depending on time and audience interest, Binet forms, Pascal-like triangle representations, matrix representations for G_{n}, and noteworthy sequences and identities will also be discussed.
Keywords: polynomial sequences, recurrence sequences, asymptotic analysis

