The Extremality of 2-partite Turán Graphs with Respect to the Number of Colorings

Melissa M. Fuentes, Villanova University

Let q be a positive integer. A q-coloring of a simple graph G is a labeling of the vertices of G in at most q labels, called colors, such that no two adjacent vertices receive the same color. Let $P_{G}(q)$ denote the total number of q-colorings of a graph G. We will discuss an old problem by Linial and Wilf, to find the graphs with n vertices and m edges which maximize $P_{G}(q)$. The problem has been completely solved for $q=2$, but the answer is still unknown for $q \geq 3$ and general n and m.

Lazebnik conjectured that among all graphs with the same number of vertices and edges as the r-partite Turán graph on n vertices, $T_{r}(n)$, the graph $T_{r}(n)$ is the only graph which obtains the most number of q-colorings for all integers $n \geq r \geq 2$ and $q \geq r$. Several cases of the conjecture have been solved for specific ranges of q and r. Toward the end of the talk, we willdiscuss the case when $r=2$ and $q \geq 5$ is odd. A paper was recently published for this particular case when n is sufficiently large: https://epubs.siam.org/doi/10.1137/22M1511990.

