

Γ -magic squares

Sylwia Cichacz, AGH University of Kraków, Poland
Dalibor Froncek*, University of Minnesota Duluth, U.S.A.

A *magic square of side n* is an $n \times n$ array whose entries are all elements of $[n^2]$, each of them present once, such that the sum of every row, column, main and backward main diagonal is equal to the same number $\mu = n(n^2 + 1)/2$. Magic squares are some of the oldest known math structures and have been studied for thousands of years. They are known to exist for any $n \neq 2$.

When we fill the entries with elements of a group Γ of order n^2 instead, we speak about a Γ -*magic square of side n* .

Until recently, the only result in this direction was a construction of $Z_n \oplus Z_n$ -magic squares. We proved that a Γ -magic square of side n exists for any Abelian group of order n^2 if and only if $n \neq 2$.

We also found Γ -semimagic squares of side $n \equiv 0 \pmod{4}$ for dihedral groups D_{2n^2} . (A *semimagic square* only requires the row and column sums to be all equal, not necessarily the diagonals.)

I will present some of our constructions for the Abelian or dihedral case or both.

Keywords: Γ -magic squares