

A Computational Approach to Growth Modeling Using Linear Recurrence Relations

Shanzhen Gao, Brooke McClinton, **Ephrem Eyob***

Department of Computer Information Systems,

Reginald F Lewis College of Business, Virginia State University

Weizheng Gao

Department of Mathematics, Computer Science and Engineering Technology

Elizabeth City State University

Growth processes are ubiquitous across diverse fields, including population dynamics, finance, epidemiology, and technological diffusion. While continuous models such as differential equations are frequently employed to describe these phenomena, real-world datasets, such as quarterly revenue, yearly enrollment, or daily active users, are inherently discrete. This paper proposes a robust computational framework for growth modeling grounded in linear recurrence relations. We move beyond manual iterative methods by formalizing a state-space representation that leverages matrix exponentiation for high-performance forecasting and long-term projection. The methodology encompasses the entire modeling lifecycle: from mathematical formalization and parameter estimation via least-squares optimization to algorithmic implementation in reproducible computing environments. Furthermore, we demonstrate how recurrence-based models can be calculated and evaluated using both synthetic and real-style datasets, providing a granular stability analysis that offers insights into oscillatory and asymptotic behaviors that continuous models often overlook. This framework bridges the gap between discrete mathematical theory and modern computational practice, offering a transparent, scalable, and extensible methodology suitable for both academic research and applied industrial analytics.

Keywords: Linear recurrence relations; growth modeling; computational modeling; state-space representation; discrete-time systems; simulation; data science