Spreading in graphs

Boštjan Brešar ${ }^{a, b}$, Tanja Dravec ${ }^{a, b}$, Aysel Erey*, and Jaka Hedžet ${ }^{b, a}$
${ }^{a}$ Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
${ }^{b}$ Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

* Department of Mathematics and Statistics, Utah State University, USA

Let $p \in \mathbb{N}$ and $q \in \mathbb{N} \cup\{\infty\}$, and let vertices of a graph G be colored either white or blue. If a white vertex w has at least p blue neighbors, and one of the blue neighbors of w has at most q white neighbors, then by the spreading color change rule the color of w is changed to blue. A set S is a (p, q)-spreading set for G if initially exactly the vertices of S are colored blue and by repeatedly applying the spreading color change rule all the vertices of G are eventually turned to blue. The (p, q)-spreading number, $\sigma_{p, q}(G)$, of a graph G is the minimum cardinality of a (p, q)-spreading set. This concept provides a common generalization of several processes of spreading that have been studied such as q-forcing and p-percolation. In this talk, I will discuss some recent results on the (p, q)-spreading numbers of graphs.
Keywords: color change rule, graph infection process

